
i

Lee Stewart

fbForth 2.0
A File-Based Cartridge

Implementation of TI Forth

Based on the TI Forth Instruction Manual (1983) by Leslie
O’Hagan, Leon Tietz and John T. Yantis

and the fbForth 1.0 Manual (2014) by Lee Stewart

ii

Published by Lee Stewart

Copyright © 2017 by Lee Stewart

All rights reserved

With proper attribution to the author, permission is hereby granted by the author to copy and
distribute the contents of this book at will.

Portions of this book were originally published in different form by the author, © 2014 – 2017 by
Lee Stewart.

Author’s website: fbforth.stewkitt.com

Cover design by Lee Stewart

Printed by CreateSpace, Charleston SC, an Amazon.com company

ISBN-13: 978-1973932673

ISBN-10: 1973932679

Original Dedication of TI Forth
This diskette-based Forth Language system for the Texas Instruments TI-99/4A Home Computer
was adapted by Leon Tietz and Leslie O’Hagan of the TI Corporate Engineering Center from Ed
Ferguson’s TMS9900 implementation of the Forth Interest Group (FIG) standard kernel. This
system was placed in the public domain “as is” by Texas Instruments on December 21, 1983, by
sending one copy of this TI Forth Instruction Manual and the TI Forth System diskette to each of
the TI-recognized TI-99/4A Home Computer User Groups as of that date. There were no more
copies made, and none are available from Texas Instruments. TI Forth had not undergone the
testing and evaluation normally given a product which is intended for distribution at the time TI
withdrew from the Home Computer market. Although both the diskette and this manual may
contain errors and omissions, TI Forth for the TI-99/4A Home Computer will not be supported by
TI in any way, shape, form or fashion. What is contained in this manual and on the
accompanying TI Forth System diskette is all that exists of this system, and is its sole reference.

Texas Instruments Incorporated (hereinafter “TI”) hereby relinquishes any and all proprietary
claims to the software language known as “TI Forth” to the public for free use thereof, without
reservations on the part of TI. It should be understood that the TI Forth software language is not
subject to any warranties of fitness, either express or implied, by TI, and TI makes no
representations as to the fitness of the TI Forth software language for any intended application by
the user. Any use of the TI Forth software language is specifically at the discretion of the user
who assumes the entire responsibility for such use.

—from the original TI Forth Manual

iii

To Anna Roth Stewart, the love of my life,

whose tolerance and encouragement

have made this book possible

iv

Table of Contents

Original Dedication of TI Forth...iii
1 Introduction..1

 1.1 Original Introduction to TI Forth..1
 1.2 Author’s Introduction..3
 1.3 Acquiring fbForth 2.0..5
 1.4 Starting fbForth 2.0...5
 1.5 fbForth 2.0 Terminal Response...7
 1.6 Changing How fbForth 2.0 Starts...7
 1.7 Startup Changes..7

 1.7.1 The Opening Menu...7
 1.7.2 Enabling 1024 KiB SAMS Mapping...8
 1.7.3 Changes to the fbForth 2.0 ISR...8
 1.7.4 Changes to COLD...8
 1.7.5 Redefinition of BOOT..9

 1.8 Acknowledgments...9
2 Getting Started..10

 2.1 Stack Manipulation...11
 2.2 Arithmetic and Logical Operations ..11
 2.3 Comparison Operations...13
 2.4 Memory Access Operations ...13
 2.5 Control Structures...14

 2.5.1 IF … THEN..14
 2.5.2 IF … ELSE … THEN...14
 2.5.3 BEGIN … AGAIN..15
 2.5.4 BEGIN … UNTIL..16
 2.5.5 BEGIN … WHILE … REPEAT...17
 2.5.6 DO … LOOP..17
 2.5.7 DO … +LOOP..19
 2.5.8 CASE … ENDCASE..20

 2.5.8.1 Without ELSEOF … ENDOF..20
 2.5.8.2 With ELSEOF … ENDOF..20

 2.6 Input and Output to/from the Terminal ...21
 2.7 Numeric Formatting ...22
 2.8 Block-Related Words..23
 2.9 Defining Words...24
 2.10 Miscellaneous Words..25

3 How to Use the fbForth 2.0 Editors..27
 3.1 Forth Block Layout Caveat...27
 3.2 The Two fbForth Editors...28
 3.3 Editing Instructions...30
 3.4 Changing Foreground/Background Colors of 64-Col Editor...32

v

 3.5 Block-Copying Utility..33
4 Memory Maps...34

 4.1 VDP Memory Map..34
 4.2 CPU Memory..35
 4.3 CPU RAM Pad...36
 4.4 Low Memory Expansion...37
 4.5 High Memory Expansion..37

5 System Synonyms and Miscellaneous Utilities...38
 5.1 System Synonyms...38

 5.1.1 VDP RAM Read/Write...39
 5.1.2 Extended Utilities: GPLLNK, XMLLNK and DSRLNK...40
 5.1.3 VDP Write-Only Registers..41
 5.1.4 VDP RAM Single-Byte Logical Operations...41

 5.2 Disk Utilities...42
 5.3 Listing Utilities...42
 5.4 Debugging..43

 5.4.1 Dump Information to Terminal...43
 5.4.2 Tracing Word Execution...44
 5.4.3 Recursion..44

 5.5 Random Numbers...45
 5.6 Miscellaneous Instructions..46

6 An Introduction to Graphics..47
 6.1 Graphics Modes..47
 6.2 fbForth 2.0 Graphics Words..48
 6.3 Color Changes..49
 6.4 Placing Characters on the Screen..50
 6.5 Defining New Characters..51
 6.6 Sprites...52

 6.6.1 Magnification..52
 6.6.2 Sprite Initialization...53
 6.6.3 Using Sprites in Bitmap Mode..54
 6.6.4 Creating Sprites...54
 6.6.5 Sprite Automotion...56
 6.6.6 Distance and Coincidences between Sprites...57
 6.6.7 Deleting Sprites...58

 6.7 Multicolor Graphics..59
 6.8 Using Joysticks...59
 6.9 Dot Graphics...62
 6.10 Special Sounds..64
 6.11 Constants and Variables Used in Graphics Programming..64

7 The Floating Point Support Package...65
 7.1 Floating Point Stack Manipulation..65
 7.2 Floating Point Defining Words..66
 7.3 Floating Point Fetch and Store..66

vi

 7.4 Floating Point Conversion Words...66
 7.5 Floating Point Number Manipulation..66
 7.6 Floating Point Number Entry..67
 7.7 Built-in Floating Point Constants..67
 7.8 Floating Point Arithmetic..68
 7.9 Floating Point Comparison Words..68
 7.10 Formatting and Printing Floating Point Numbers...68
 7.11 Transcendental Functions..70
 7.12 Interface to the Floating Point Routines..71
 7.13 Handling Floating Point Errors...71
 7.14 Floating Point Error Codes..72

8 Access to File I/O Using TI-99/4A Device Service Routines..73
 8.1 Switching VDP Modes After File Setup..73
 8.2 The Peripheral Access Block (PAB)..73
 8.3 File Setup and I/O Variables...74
 8.4 File Attribute Words..75
 8.5 Words that Perform File I/O..76
 8.6 Alternate Input and Output..79
 8.7 File I/O Example 1: Relative Disk File..80
 8.8 File I/O Example 2: Sequential RS232 File...81
 8.9 Disk Catalog Utilities..82

 8.9.1 DIR...82
 8.9.2 CAT...83

9 The fbForth 2.0 TMS9900 Assembler...84
 9.1 TMS9900 Assembly Mnemonics..84
 9.2 fbForth 2.0’s Workspace Registers..85
 9.3 Loading and Using the Assembler..85
 9.4 fbForth 2.0 Assembler Addressing Modes..86

 9.4.1 Workspace Register Addressing..87
 9.4.2 Symbolic Memory Addressing..87
 9.4.3 Workspace Register Indirect Addressing...87
 9.4.4 Workspace Register Indirect Auto-increment Addressing...88
 9.4.5 Indexed Memory Addressing..88
 9.4.6 Addressing Mode Words for Special Registers...88

 9.5 Handling the fbForth 2.0 Stacks..89
 9.6 Structured Assembler Constructs..89
 9.7 Assembler Jump Tokens..90
 9.8 Assembly Example for Structured Constructs...90
 9.9 Jump Instructions (If You Must!)..91
 9.10 Assembly Example with DOES>ASM:..91
 9.11 ASM: and DOES>ASM: without the Assembler...93

 9.11.1 ASM: without the Assembler..93
 9.11.2 DOES>ASM: without the Assembler..94

10 Interrupt Service Routines (ISRs)...96

vii

 10.1 Overview of fbForth 2.0’s ISR..96
 10.2 A Detailed Look at fbForth 2.0’s ISR..96
 10.3 Installing a User ISR...97
 10.4 Example of a User ISR: DEMO...98

 10.4.1 Installing the DEMO ISR..99
 10.4.2 Uninstalling the DEMO ISR...99

 10.5 Some Additional Thoughts Concerning the Use of ISRs...100
11 Potpourri...101

 11.1 BSAVE and BLOAD...101
 11.1.1 Using BSAVE to Customize How fbForth 2.0 Boots Up......................................102
 11.1.2 An Overlay System with BSAVE and BLOAD...102
 11.1.3 An Easier Overlay System in Source Code...104

 11.2 Conditional Loads...105
 11.3 CRU Words...106
 11.4 Useful Additional Stack Words...107

12 fbForth 2.0 Dictionary Entry Structure...109
 12.1 Link Field..109
 12.2 Name Field..109
 12.3 Code Field...110
 12.4 Parameter Field...111
 12.5 Notes on Resident Dictionary Words...111

13 Screen Fonts and the Font Editor..112
 13.1 Screen Font Changes as of fbForth 2.0:8...112
 13.2 User Fonts...113
 13.3 Using the Font Editor..113
 13.4 Modifying the 64-Column Editor’s Font...115

14 The Stack-based String Library...117
 14.1 Introduction—The Concepts behind the Library...117

 14.1.1 Coding Conventions..117
 14.1.2 Stack Notation...118
 14.1.3 Loading the String Stack Library..118

 14.2 String Constant Words...118
 14.3 String Stack Words..120
 14.4 The String Stack..126
 14.5 Error Checking..126
 14.6 String Stack Format..126
 14.7 String Constant Format...127
 14.8 Throw Codes...127
 14.9 Author Information...127

15 TI Forth Block Utilities...128
 15.1 TIFBLK: Display TI Forth Block...128
 15.2 TIFIDX: Display TI Forth Index Lines..129
 15.3 TIF2FBF: Copy TI Forth Blocks to fbForth Blocks...130
 15.4 TIFVU: TI Forth Browser/Copier..130

viii

16 Speech Words..133
 16.1 Testing the State of the Speech Synthesizer..133
 16.2 Using the Speech Synthesizer’s Resident Vocabulary...133
 16.3 The Speech Synthesizer’s Resident Vocabulary..133
 16.4 Streaming Raw Speech Data...138

17 Sound Words...139
 17.1 Generating Individual Sounds...139
 17.2 Playing Sound Lists..139

18 Signed Integer Division..141
 18.1 M/...143
 18.2 SM/REM and FM/MOD...144
 18.3 S|F Programming Considerations..145

Appendix A ASCII Keycodes (Sequential Order)...147
Appendix B ASCII Keycodes (Keyboard Order)..149
Appendix C How fbForth 2.0 differs from Starting FORTH (1st Ed.)..151
Appendix D The fbForth 2.0 Glossary..159

 D.1 Explanation of Some Terms and Abbreviations..159
 D.2 Naming Conventions for Forth Words...160
 D.3 fbForth 2.0 Word Descriptions...163

Appendix E Differences: fbForth 2.0, fbForth 1.0 and TI Forth..252
 E.1 TI Forth Words not in fbForth 2.0...252
 E.2 fbForth 1.0 Words not in fbForth 2.0..255
 E.3 New and Modified Words in fbForth 2.0..257

Appendix F User Variables in fbForth 2.0...264
 F.1 fbForth 2.0 User Variables (Address Offset Order)...264
 F.2 fbForth 2.0 User Variables (Variable Name Order)...266

Appendix G fbForth 2.0 Load Option Directory...268
 G.1 Option: 64-Column Editor..268
 G.2 Option: CPYBLK -- Block Copying Utility..268
 G.3 Option: Memory Dump Utility..268
 G.4 Option: TRACE -- Colon Definition Tracing..268
 G.5 Option: Printing Routines..269
 G.6 Option: TMS9900 Assembler..269
 G.7 Option: CRU Words..269
 G.8 Option: More Useful Stack Words etc...269
 G.9 Option: Stack-based String Library...269
 G.10 Option: DIR -- Disk Catalog Utility..269
 G.11 Option: CAT -- Disk Catalog Utility..269
 G.12 Option: TI Forth Block Utilities..270
 G.13 Option: ASM>CODE -- Code Output Utility..270
 G.14 Option: Compact Flash Utilities..270

Appendix H Assembly Source for CODEd Words..271
Appendix I Error Messages...276
Appendix J Contents of FBLOCKS..278

ix

Appendix K Diskette Format Details..299
 K.1 Volume Information Block (VIB)...299
 K.2 File Descriptor Index Record (FDIR)...300
 K.3 File Descriptor Record (FDR)..300

Appendix L Notes on Radix-100 Notation..302
Appendix M Bug Fixes as of fbForth 2.0:9..303

x

1 Introduction 1

1 Introduction

 1.1 Original Introduction to TI Forth

The Forth language was invented in 1969 by Charles Moore and has continually gained
acceptance. The last several years have shown a dramatic increase in this language’s following
due to the excellent compatibility between Forth and mini- and microcomputers. Forth is a
threaded interpretive language that occupies little memory, yet, maintains an execution speed
within a factor of two of assembly language for most applications. It has been used for such
diverse applications as radio telescope control to the creation of word processing systems. The
Forth Interest Group (FIG) is dedicated to the standardization and proliferation of the Forth
language. TI Forth is an extension of the fig-Forth dialect of the language. The fig-Forth
language is in the public domain. Nearly every currently available mini- and microcomputer has
a Forth system available on it, although some of these are not similar to the FIG version of the
language.

The address for the Forth Interest Group is:

Forth Interest Group
P. O. BOX 1105
San Carlos, CA 94070

This document will cover some of the fundamentals of Forth and then show how the language has
been extended to provide easy access to the diverse features of the TI-99/4A Computer. The
novice Forth programmer is advised to seek additional information from such publications as:

Starting FORTH (1st Ed.)
by Leo Brodie
published by Prentice Hall

Using FORTH
by Forth Inc.

Invitation to FORTH
by Katzan
published by Petrocelli Books

In order to utilize all the capabilities of the TI-99/4A, it is necessary to understand its architecture.
It is recommended that the user who wants to use Forth for graphics, music, access to Disk
Manager functions or files have a working knowledge of this architecture. This information is
available in the Editor/Assembler Manual accompanying the Editor/Assembler Command
Module. All the capabilities addressed in that document are possible in Forth and most have been
provided by easy-to-use Forth words that are documented in this manual.

Forth is designed around a virtual machine with a stack architecture. There are two stacks: The
first is referred to variously as the data stack, parameter stack or stack. The second is the return
stack. The act of programming in Forth is the act of defining procedures called “words”, which
are defined in terms of other more basic words. The Forth programmer continues to do this until
a single word becomes the application desired. Since a Forth word must exist before it can be
referenced, a bottom up programming discipline is enforced. The language is structured and

2 1.1 Original Introduction to TI Forth

contains no GOTO statements. Successful Forth programming is best achieved by designing top
down and programming bottom up.

Bottom-up programming is inconvenient in most languages due to the difficulty in generating
drivers to adequately test each of the routines as they are created. This difficulty is so severe that
bottom-up programming is usually abandoned. In Forth, however, each routine can be tested
interactively from the console and it will execute identically to the environment of being called
by another routine. Words take their parameters from the stack and place the results on the stack.
To test a word, the programmer can type numbers at the console. These are put on the stack by
the Forth system. Typing the word to be tested causes it to be executed and when complete, the
stack contents can be examined. By writing only relatively small routines (words) all the
boundary conditions of the routine can easily be tested. Once the word is tested (debugged) it can
be used confidently in subsequent word definitions.

The Forth stack is 16 bits wide. [Author’s Note: In Forth, a 16-bit value is known as a cell. Hence the
stack is one cell wide.] When multi-precision values are stored on the stack they are always stored
with the most significant part most accessible. The width of the return stack is implementation
dependent as it must contain addresses so that words can be nested to many levels. The return
stack in TI Forth is 16 bits wide.

[Author's Note: This paragraph’s use of DR0, DR1, etc. does not obtain for fbForth because those words have
been eliminated from fbForth] Disk drives in TI Forth are numbered starting with 0 and are
abbreviated with “DR” preceding the drive number: DR0, DR1, etc. Other TI languages (TI
Basic, TI Extended Basic, TI Assembler, etc.) and software refer to disk drives starting with 1 and
the abbreviation “DSK” preceding the disk (drive) number: DSK1, DSK2, etc. From this you
can see that DR0 and DSK1 refer to the same disk drive. When referring to the disk drives by
device names, they will always be DSK1, …, such as part of a complete file reference, e.g.,
DSK1.MYFILE.

Keyboard key names in this document will be offset with “<>” and set in the italicized font of
the following examples: <ENTER>, <CTRL+V>, <FCTN+4>, <BREAK> and <CLEAR>. Incidentally, the
last three key names listed refer to the same key.

—from original TI Forth Manual

1 Introduction 3

 1.2 Author’s Introduction

My source for the text of the original TI Forth Instruction Manual, much of which is included in
this document, was a series of sixteen files named A, B, C, …, P in TI-Writer format, which I had
purchased from the MANNERS (Mid-Atlantic Ninety-NinERS) TI Users Group shortly after TI
put TI Forth into the public domain. I do not know who deserves the credit for originating these
files, but it was always my understanding they came from TI and that the printed document we all
received with the TI Forth system was prepared in and printed from TI Writer. However, the
A – P files have differences from the original printed document. I have taken the liberty of
incorporating most of the original into this fbForth 2.0: A File-Based Cartridge Implementation
of TI Forth.

Chapters 1 – 11 have the same topics and much of the same structure as the original TI Forth
Manual. The same goes for the seven original appendices, except for the insertion of the current
Appendix E “Differences: fbForth 2.0, fbForth 1.0 and TI Forth”, which shifts the original
Appendices E – I to F – J.

Forth screens are now referred to as blocks, in line with the current Forth convention.

Though not new since fbForth 1.0, Chapter 12 “fbForth 2.0 Dictionary Entry Structure” bears
mentioning here to remind you of its existence and to note the addition of § 12.5 “Notes on
Resident Dictionary Words”, which describes how the resident dictionary’s structure in ROM
differs from the user’s dictionary in RAM.

Also noteworthy additions since the original TI Forth are

• Appendix K “Diskette Format Details”.

• Appendix L “Notes on Radix-100 Notation”, which describes in detail the radix-100
(base-100) notation implemented for floating point numbers on the TI-99/4A.

New to fbForth 2.0 are

• The facility for loading your own font in place of the default font in the cartridge (see
Chapter 13 “Screen Fonts and the Font Editor”). Chapter 13 also provides instruction for
using the author’s Font Editor. New words are SCRFNT , FNT , USEFFL and FONTED .

• A stack-based string library has been added to FBLOCKS and is fully described in
Chapter 14 “The Stack-based String Library”.

• Chapter 15 “TI Forth Block Utilities” describes a set of utilities added to FBLOCKS for
browsing/reading/writing TI Forth blocks.

• Chapter 18 “Signed Integer Division” discusses signed integer division and the different
methods available in fbForth 2.0 for its implementation. The ANS Forth words,
SM/REM and FM/MOD , now part of fbForth 2.0, are discussed in detail, as is the User
Variable S|F that allows the user to specify which method of signed integer division
fbForth 2.0 should use.

• Several software packages, previously requiring loading from FBLOCKS, are now part
of the resident dictionary:

◦ 40/80 Column Editor, rewritten in TMS9900 Assembly Language (ALC) for
efficiency, now including an on-screen menu.

◦ Floating Point Math Library, which no longer uses the console GPL/XML-based
library, and contains several new words, including FFMT. (includes a formatted print

4 1.2 Author’s Introduction

option for 3-digit E-notation), >DEG , >RAD , CEIL , DEG/RAD , EXP10 , EULER_E ,
F>R , FABS , FCONSTANT , FMT. , FLOOR , FMINUS , FP1 , FP10 , FRAC , FROT ,
FVARIABLE , LN10INV , LOG10 , R>F , RAD/DEG and TRUNC .

◦ File I/O Library.

◦ BSAVE—Binary Save Routine.

◦ All Graphics modes, including VMODE , an all-purpose mode-changing word.

◦ Graphics Primitives Library, much of it rewritten in ALC.

• .BASE—a new word for displaying the current radix (number base) in decimal: This is
useful because, regardless of the current radix, executing BASE @ . will always display
10—not particularly useful! For example, HEX .BASE yields 16 , which is much more
informative.

• DIR—new disk cataloging word in FBLOCKS that uses the DSR’s catalog “file” to get
disk and file information. The actual byte size of PROGRAM files is unavailable with
this word.

• CAT—new disk cataloging word in FBLOCKS that uses the disk’s VIB, FDIR and FDRs
to get disk and file information. The actual byte size of PROGRAM files is displayed.

• Many new words have been added and many words have been removed. Many of them
are noted in this “Author’s Introduction”. See Appendix E “Differences: fbForth 2.0,
fbForth 1.0 and TI Forth” for a detailed list.

• SAMS memory expansion (1024 KiB) is supported with SAMS? , SAMS! , S0&TIB! and
>MAP .

• Sound for the four separate sound generators is supported with SOUND .

• fbForth 2.0 ISR has been extensively modified to support interrupt driven speech and
sound lists.

◦ The sound lists include sound list #1, which can be interrupted by sound list #2.
Sound list #1 will not be paused, but rather will be muted. These sound lists are
implemented with PLAYING? and PLAY .

◦ The TI Speech Synthesizer is supported with TALKING? , SAY and STREAM .

• Scrollable panels (windows) are supported with PANEL , WRAP and SCROLL .

• ASM: … ;ASM and CODE: … ;CODE provide clearer ways of defining words with
Assembly Language and machine code, respectively.

• DOES>ASM: … ;ASM and DOES>CODE: … ;CODE provide clearer ways of coding the
runtime behavior of defining words with Assembly Language and machine code,
respectively.

• N>S pushes to the stack the next number in the input stream. This word is required to get
a number to the stack within CODE: … ;CODE and DOES>CODE: … ;CODE constructs.

• The DATA[…]DATA construct allows for quickly compiling a block of cells to HERE or
into a word definition. This is particularly useful for character (DCHAR) and sprite
(SPDCHAR) patterns as well as sound lists, etc.

• Users of the nanoPEB or CF7+ devices manufactured by Jaime Malilong, occasionally
available on eBay.com, (see website: webpages.charter.net/nanopeb for description) can
use the Compact Flash utilities (CF? , CFVOLS and CFMOUNT), added to FBLOCKS to

1 Introduction 5

discover what volume numbers are mounted as DSK1, DSK2 and DSK3, as well as to
mount a specific volume in DSK1, DSK2 or DSK3.

You will notice at startup that a revision number appears following a ‘:’ after the version number.
The current version:revision is displayed as fbForth 2.0:9. Using a revision number allows for
minor builds that correct errors and fix bugs. Until a version-number change, this document will
continue to use fbForth 2.0 without the revision number in most instances.

Please note that the SI unit “KiB” is used in this document to denote a byte-multiple of
210 = 1024, where “KB” had been so used. This is because the old unit is now an SI unit that
denotes a byte-multiple of 103 = 1000.

Though, in coding fbForth 2.0, I have been careful with my modifications of TI Forth in
converting it to use file I/O for reading and writing fbForth blocks, as with anything else in this
document, you assume responsibility for any use you make of it. Please, feel free to contact me
with comments and corrections at lee@stewkitt.com.

—Lee Stewart
August, 2017

Silver Run, MD
fbforth.stewkitt.com

 1.3 Acquiring fbForth 2.0

A cartridge with the current version of fbForth 2.0 is available at fbforth.stewkitt.com, the
author’s website. There, you will also find current versions of FBLOCKS and FBFONT; source
code and binaries for fbForth 2.0; and much more fbForth-related information.

 1.4 Starting fbForth 2.0

To operate the fbForth 2.0 System, you must have the following equipment or equivalent:

TI-99/4A Console
Monitor
Memory Expansion
Disk Controller
1 (or more) Disk Drives
fbForth 2.0 Module (cartridge available from the author via fbforth.stewkitt.com)
RS232 Interface (optional)
Printer (optional)

See the manuals accompanying each item for proper assembly of the TI-99/4A system.

The fbForth 2.0 system consists of the fbForth 2.0 cartridge along with the system blocks file
(FBLOCKS) and the default font file (FBFONT) on the system disk. fbForth 2.0 will complain
if it does not find FBLOCKS, but will start perfectly well without it. The useful utilities in
FBLOCKS make it advantageous to the user to keep an up-to-date version on the system disk.

To begin, power up the system. The TI Color-Bar screen should appear on your monitor. If it
does not, power down and recheck all connections. Press any key to continue. A new screen will
appear, displaying choices for TI Basic and two fbForth 2.0 variants. To use fbForth 2.0, select
one of its menu options. Pressing and holding a number key immediately following the menu

6 1.4 Starting fbForth 2.0

selection will cause the startup code to look for the system files on that disk number. Pressing
and holding <ENTER> instead will prevent loading of FBLOCKS, but not DSK1.FBFONT.

fbForth 2.0 boots and displays the following welcome screen if DSK1.FBLOCKS and
DSK1.FBFONT are found. Note that the revision number now appears after the ‘:’:

Note that the current modification date of FBLOCKS is displayed. Typing “MENU” per the
startup instructions will display the following menu:

Loading a block in the “Load Block” column in the above menu loads all routines necessary to
perform the task(s) described.

1 Introduction 7

To load a particular package, simply type its load-block number, exactly as it appears in the
menu, followed by LOAD . For example, to load the fbForth 2.0 TMS9900 Assembler, type
21 LOAD and press <ENTER>. You may load more than one package at a time.

The list of load options may be displayed at any time by typing the word MENU and pressing
<ENTER>. See Appendix G for a detailed list of what each option loads.

 1.5 fbForth 2.0 Terminal Response

With few exceptions after typing <ENTER>, fbForth responds with:

ok: n

where the number n following ok: is the depth of the parameter stack, i.e., the count of numbers
or cells on the stack. For example, if the stack were empty and you typed three numbers followed
by <ENTER>, the following would obtain:

2 4 6 ok:3

Note that above and elsewhere in this manual the computer’s responses are underlined.

 1.6 Changing How fbForth 2.0 Starts

When fbForth 2.0 boots up, it always looks for DSK1.FBLOCKS and complains if it does not
find it. Upon finding it, fbForth 2.0 always loads block 1, the first block in the file. This
provides you a way to change what happens at that point in the fbForth boot process. You can
design your own blocks file that loads your favorite words, including those you create. All you
need to do is to eventually rename the file “FBLOCKS” and place it in DSK1 when you want
fbForth 2.0 to load it after it boots up.

The boot process also looks for DSK1.FBFONT, which contains the default startup font. This
font has true lowercase letters with descenders. If this font file is not found, the console font is
loaded, with its small-caps letters instead of true lowercase letters.

 1.7 Startup Changes

This section will detail the startup changes made to fbForth 2.0 since fbForth 2.0:2, many of
which are significant.

 1.7.1 The Opening Menu

The opening menu has two choices for fbForth 2.0 as shown in the screen shot as shown on the
next page:

• Option 2 will open in 40-column Text mode, TEXT .

• Option 3 will open in 80-column Text mode, TEXT80 , which must not be selected unless
the user has installed an F18A, V9938 or similar video display processor capable of 80-
column Text mode. Otherwise, the display will be corrupted and VRAM will not be set
up properly.

8 1.7 Startup Changes

 1.7.2 Enabling 1024 KiB SAMS Mapping

After selection of one of the fbForth 2.0 options, the first thing that the initialization code does is
to set up 1024 KiB SAMS, whether or not a SAMS card is present! It then tests for proper SAMS
operation by writing a 16-bit value to an arbitrary address, mapping another SAMS bank to the
4 KiB segment containing the written value and, finally, testing for the written value. If the
written value is found, the SAMS mapping did not work. If it is not found, SAMS mapping
obviously worked. The SAMS flag is set to 0 or 1, accordingly. It is this flag that is tested by
SAMS? , see Appendix D “The fbForth 2.0 Glossary”.

 1.7.3 Changes to the fbForth 2.0 ISR

The fbForth 2.0 ISR is now enabled at startup so that the new speech (SAY and STREAM) and
sound (PLAY) words will work. The speech and sound word ISRs are driven by the fbForth 2.0
ISR. It is easy enough to disable it if the user does not use speech, sound or a user ISR and wants
to recover the little bit of time it takes for the fbForth 2.0 ISR to check for non-existent ISRs to
service. See Chapter 10 “Interrupt Service Routines (ISRs)” for details.

 1.7.4 Changes to COLD

COLD is the last routine executed by the fbForth 2.0 startup code. Formerly, it was a high-level
Forth word that called another high-level Forth word (BOOT) at its conclusion. They have both
been combined into a single ALC routine that (re)sets the Forth environment to the default startup
conditions.

Holding down a key immediately upon execution of COLD will force COLD to look for FBLOCKS
from that disk. If the user executed COLD , the last loaded font is reloaded regardless of the new
disk selection indicated by the held key. Whereas, at startup, the held key depressed immediately
after the menu selection, will, in fact, also cause the search for FBFONT on the held key’s disk.
Both invocations of COLD will not attempt to load FBLOCKS if <ENTER> is the held key.

1 Introduction 9

If <ENTER> was held down at powerup or after execution of BOOT (see next section), the default
disk drive for both FBLOCKS and FBFONT is DSK1. Though DSK1.FBLOCKS is not loaded,
DSK1.FBFONT is loaded (or, at least, attempted). For the next go-round with COLD executed by
the user, if no key is held down then, both DSK1.FBLOCKS and DSK1.FBFONT will be loaded
if found.

User changes to the following settings will survive a user-executed COLD :

• Display font (see USEFFL , SCRFNT , FNT for how to change font)

• Default colors for all VDP modes (see definition of DCT for how to change)

• Default VDP mode, which should be limited to TEXT80 (0) or TEXT (1) (see definition of
DCT for how to change)

• Default S0 and TIB changed by S0&TIB! .

 1.7.5 Redefinition of BOOT

BOOT has been redefined to restart fbForth 2.0 at the cartridge startup code. The desired default
VDP text mode of TEXT80 or TEXT may be set by pushing to the stack 0 or 1, respectively, prior
to executing BOOT :

0 BOOT

will set the default VDP text mode to TEXT80 and reboot fbForth 2.0 just as though the user had
made the selection on the opening screen.

BOOT may also be executed with nothing on the stack:

BOOT

which will set the default VDP text mode to TEXT as though the user had executed

1 BOOT

Holding a disk-selection key or <ENTER> will have the same effect as at powerup selection.

 1.8 Acknowledgments

The author would like to thank the following for their help with the development of fbForth 2.0:

• Tim Tesch for the source code of the MDOS L10 Floating Point Library (FPL) and
encouragement and permission in this effort to adapt it to do the heavy lifting for the
fbForth 2.0 Floating Point Library.

• Beery Miller for permission to use the MDOS L10 FPL.

• 9640News and all of the MDOS contributors who developed the TMS9900 code for the
MDOS L10 FPL, which the author adapted for use with fbForth 2.0 on the TI-99/4A.

• Mark Wills for his assistance, encouragement, permission to use code from TurboForth1

and porting his TurboForth String Stack Library to fbForth 2.0.

• Matthew Splett for his assistance in debugging the fbForth 2.0 kernel code as well as
proofreading and assistance with editing this manual.

1 See Mark Wills’ website: turboforth.net.

10 2 Getting Started

2 Getting Started
This chapter will familiarize you with the most common words (instructions, routines) in the
Forth Interest Group version of Forth (fig-Forth). The purpose is to permit those users that have
at least an elementary knowledge of some Forth dialect to easily begin to use fbForth 2.0. Those
with no Forth experience should begin by reading a book such as Starting FORTH, (1st Ed.) by
Leo Brodie. Appendix C “How fbForth 2.0 differs from Starting FORTH (1st Ed.)” is designed to
be used side by side with Starting FORTH, (1st Ed.) and lists the differences between the Forth
language described in the book (polyForth) and fbForth 2.0.

A word in Forth is any sequence of characters delimited (set off) by blanks or a carriage return
(<ENTER>). In this document, all Forth words will be set in a bold mono-spaced font that
distinguishes the digit ‘0’ from the capital letter ‘O’ and will always be followed by a blank, even
when punctuation such as a period or a comma follows. For example, DUP is such a Forth word
and is shown also at the end of this sentence to demonstrate this practice: DUP . This obviously
looks odd, but this notation is necessary to avoid ambiguity when discussing Forth words because
many of them either end in or, in fact, are such punctuation marks themselves. For example, the
following, space-delimited character strings are all Forth words:

. : , ' ! ; C, C! ;CODE ? ." ASM:

The following convention will be used when referring to the stack in Forth:

(n1 n2 --- n3)

This diagram shows the stack contents before and after the execution of a word. In this case the
stack contains two values, n1 and n2, before execution of a word. The execution is denoted by
“---” and the stack contents after execution is n3. The most accessible stack element is always on
the right. In this example, n2 is more accessible than n1. There may be values on the stack that are
less accessible than n1 but these are unaffected by the execution of the word in question.

When the return stack is manipulated by a word, it will be shown beside the parameter stack (the
stack) with a preceding “R:”:

(n ---) (R: --- n)

When the input stream is used by a word, it will be indicated next to the stack signatures with a
preceding “IS:”:

(n ---) (IS:string")

In addition, the following symbols are used as operands for clarity:

SOME SYMBOLS USED IN THIS DOCUMENT
n, n1 , ... 16-bit signed numbers

d, d1 , ... 32-bit signed double numbers

u 16-bit unsigned number

ud 32-bit unsigned double number

f 8-byte, 4-cell, radix-100 floating-point number

addr, addr1 , ... memory addresses

2 Getting Started 11

b 8-bit byte (in right half of cell)

c 7-bit character (in right end of cell)

flag Boolean flag (0 = false, non-0 = true)

| separates alternate results

 2.1 Stack Manipulation

The following are the most common stack-manipulation words:

-DUP (n --- n n | n) Duplicate only if non-zero

.S (---) Non-destructively display stack contents

>R2 (n ---) (R: --- n) Move top item on stack to return stack

DEPTH (--- stack-depth) Number of cells on parameter stack

DROP (n ---) Discard top of stack

DUP (n --- n n) Duplicate top of stack

OVER (n1 n2 --- n1 n2 n1) Make copy of second item on top

R (--- n) (R: n --- n) Copy top item of return stack to stack

RP! (---) Clear return stack, resetting it to its base R0. Be
extremely careful using this word!

R0 (--- addr) User Variable with return stack base address

R>2 (--- n) (R: n ---) Move top item on return stack to stack

RP@ (--- addr) Leave address of top of return stack

ROT (n1 n2 n3 --- n2 n3 n1) Rotate third item to top

SP! (---) Clear stack, resetting it to its base S0

S0 (--- addr) User Variable containing stack base address

SP@ (--- addr) Leave address of top of stack

SWAP (n1 n2 --- n2 n1) Exchange top two stack items

 2.2 Arithmetic and Logical Operations

The following are the most common arithmetic and logical operations:

* (n1 n2 --- n3) Multiply

*/3 (n1 n2 n3 --- quot) Like */MOD but giving quot only

*/MOD3 (n1 n2 n3 --- rem quot) n1 * n2 / n3 with 32-bit intermediate

2 >R and R> must be used with caution as they may interfere with the normal address stacking mechanism of Forth.
Make sure that each >R in your program has an R> to match it in the same word definition.

12 2.2 Arithmetic and Logical Operations

+ (n1 n2 --- n3) Add

- (n1 n2 --- n3) Subtract (n1 – n2)

/3 (n1 n2 --- n3) Divide n1 by n2 and leave quotient n3

/MOD3 (n1 n2 --- rem quot) Divide n1 by n2 giving remainder & quotient

1+ (n1 --- n2) Increment by 1

2+ (n1 --- n2) Increment by 2

1- (n1 --- n2) Decrement by 1

2- (n1 --- n2) Decrement by 2

ABS (n --- |n|) Absolute value

AND (n1 n2 --- n3) Bitwise logical AND giving n3

D+ (d1 d2 --- d3) Add double precision numbers

D+- (d1 n --- d2) Negate double number d1 if sign of n is negative

DABS (d --- |d|) Absolute value of 32-bit number

DMINUS (d1 --- d2) Leave two’s complement of 32-bits

FM/MOD (d n --- rem quot) Mixed-magnitude, floored divide

MAX (n1 n2 --- n1 | n2) Maximum

MIN (n1 n2 --- n1 | n2) Minimum

M* (n1 n2 --- d) Multiply 2 single numbers giving double result

M/3 (d n --- rem quot) Mixed-magnitude divide

M/MOD (ud u --- urem udquot) Unsigned mixed-magnitude divide

MINUS (n1 --- n2) Leave two’s complement

MOD3 (n1 n2 --- n3) Modulo (remainder from n1 / n2)

OR (n1 n2 --- n3) Bitwise logical OR n3

SGN (n --- -1 | 0 | +1) Sign of n as -1 | 0 | +1

SLA (n1 n2 --- n3) Shift n1 left arithmetic n2 bits giving n3

SM/REM (d n --- rem quot) Mixed-magnitude, symmetric divide

SRA (n1 n2 --- n3) Shift n1 right arithmetic n2 bits giving n3

SRC (n1 n2 --- n3) Shift n1 right circular n2 bits giving n3

SRL (n1 n2 --- n3) Shift n1 right logical n2 bits giving n3

SWPB (n1 --- n2) Swap the bytes of n1 producing n2

3 The division performed by this word will be symmetric if user variable S|F = 0 (the default) or floored if S|F ≠ 0.
See entry for M/ in Appendix D “The fbForth 2.0 Glossary” and Chapter 18 “Signed Integer Division” for details.

2 Getting Started 13

XOR (n1 n2 --- n3) Bitwise logical exclusive OR n3

U* (u1 u1 --- ud2) Unsigned * with double product

U/ (u1 u2 --- urem uquot) Unsigned / with remainder

 2.3 Comparison Operations

The following are the most common comparisons (flag = 1 for true; flag = 0 for false):

< (n1 n2 --- flag) True if n1 < n2 (signed)

= (n1 n2 --- flag) True if n1 = n2

> (n1 n2 --- flag) True if n1 > n2

0< (n --- flag) True if top number is negative

0= (n --- flag) True if top number is 0

0> (n --- flag) True if top number is positive

U< (u1 u2 --- flag) True if u1 < u2 (unsigned)

 2.4 Memory Access Operations

The following operations are used to inspect and modify memory locations anywhere in the
computer:

! (n addr ---) Store n at address (store a cell)

+! (n addr ---) Add n to contents of address

>MAP (bank addr ---) Maps SAMS memory bank to addr.

? (addr ---) Print the contents of address (same as @ .)

@ (addr --- n) Replace word address by its contents

C! (b addr ---) Store b at address (store a byte)

C@ (addr --- b) Fetch the byte at addr

CMOVE (from_addr to_addr u ---) Block move u bytes.

BLANKS (addr u ---) Fill u bytes with blanks beginning at addr

ERASE (addr u ---) Fill u bytes beginning at addr with 0s

FILL (addr u b ---) Fill u bytes with b beginning at addr

MOVE (from_addr to_addr u ---) Block move u cells.

14 2.5 Control Structures

 2.5 Control Structures

The sets of words detailed in the following sections are used to implement control structures in
fbForth. They are used to create all looping and conditional structures within the definitions of
fbForth words. These structures may be nested to any depth that the return and parameter stacks
can tolerate. If they are nested improperly an error message will be generated at compile time
and the word definition will be aborted.

It can be very difficult for programmers new to Forth to understand how control structures work
in Forth because of the stack-oriented nature of the language. Using these control structures will
be a piece of cake once you understand that the value tested or otherwise consumed by IF ,
UNTIL , WHILE , CASE , OF , ENDCASE or DO must be on the stack before the word is executed
rather than following the word inline as with most other programming languages. The sections
that follow show details and examples of each control structure to give you a better idea of how
they work. Some of the examples are taken from the resident dictionary of fbForth 2.0 while
others are from nonresident words that are part of the default system blocks file, FBLOCKS.

 2.5.1 IF … THEN

IF … THEN IF tests the top of stack and if non-zero (true), the
words between IF and THEN are executed. Otherwise,
they are skipped and execution resumes after THEN .

IF (flag ---)

ENDIF Synonym for THEN .

The words IF and THEN enclose code that will be executed when IF finds a nonzero value for
flag on the stack. Consider the following example that simply takes the number on top of the
stack and makes sure it is even, adding 1 if it is not:

: EVEN « Define word EVEN to insure top of stack contains an even
number. Add 1 if not.

(n1 --- n1 | n1+1) « In: n1. Out: n1 or n1+1.
DUP 1 AND « Duplicate n1. Check if odd, i.e., LSb (least-significant bit)

set.
IF « Is n1 odd? (IF tests the number left on the stack in the

above line).
1+ « Yes. Add 1 to n1 to make it even.

THEN
;

 2.5.2 IF … ELSE … THEN

IF … ELSE … THEN IF tests the top of stack and if non-zero (true), the
words between IF and ELSE are executed. If the top of
the stack is zero (false), the words between ELSE and
THEN are executed. Execution then continues after
THEN .

IF (flag ---)

2 Getting Started 15

The IF … ELSE … THEN structure causes execution of one of two alternatives. The following
example is part of the fbForth 2.0 resident dictionary. CLOAD loads a block from the current
blocks file only if the word that follows CLOAD in the input stream cannot be found in the
dictionary. It is a state-smart word that can be used in a word definition as well as on the
command line. It is used in the following way:

20 CLOAD MYWORD ,

where 20 is the block that will be loaded from the current blocks file if MYWORD is not found in
the dictionary.

: CLOAD « Define CLOAD to conditionally load a block from blocks file.
(blk# ---) « Load blk# if word after CLOAD not found.
[COMPILE] WLITERAL « Force immediate word WLITERAL to compile into definition

of CLOAD so it executes when CLOAD executes.
STATE @ « Get compilation state for IF to test.
IF « Are we compiling?

COMPILE <CLOAD> « Yes. Defer execution of runtime procedure <CLOAD> by
compiling it into word invoking CLOAD in its definition.

ELSE
<CLOAD> « No. Execute it.

THEN
; IMMEDIATE « Make CLOAD immediate, i.e., execute even if compiling.

 2.5.3 BEGIN … AGAIN

BEGIN … AGAIN Creates an infinite loop, continually re-executing the
words between BEGIN and AGAIN4.

The BEGIN … AGAIN infinite loop is the simplest looping structure in fbForth because there are
no tests—it just repeats forever the words between BEGIN and AGAIN . The only way the loop
can be exited is if QUIT or ABORT gets executed within the loop or another word drops the top of
the return stack.4 Generally, however, if you wish to provide a normal exit from the loop, you
should use one of the conditionally looping structures described in sections following this one.

The following example is the primary loop in fbForth. The last thing the fbForth boot process
does is to execute QUIT . QUIT is an endless loop whose primary function is to repeatedly call
the interpreter, which is itself an endless loop:

: QUIT (---) « Define QUIT with no inputs or outputs.
0 BLK ! « Store 0 in BLK to set up input from the terminal.
[COMPILE] [« Compile immediate word [into QUIT ’s definition; [will

set system to interpret state when QUIT executes.
BEGIN « Start infinite, top-level loop.

RP! CR « Clear return stack. Put screen cursor at start of next line.
QUERY « Get a line of text.
INTERPRET « Interpret input text.
STATE @ « Get compilation state.

4 This loop may be exited by executing R> DROP one level below.

16 2.5 Control Structures

0= IF « Are we interpreting, i.e., STATE = 0?
." ok:" DEPTH . « Yes. Echo “ ok:” to the terminal followed by stack depth.

THEN
AGAIN « Repeat loop.

;

 2.5.4 BEGIN … UNTIL

BEGIN … UNTIL Loop that executes the words between BEGIN and
UNTIL , which must leave flag to be tested by UNTIL ,
until flag is non-zero (true).

UNTIL (flag ---)

END Synonym for UNTIL .

The following example is from the resident dictionary. VLIST lists words in the CONTEXT
vocabulary starting with the last defined word pointed to by CONTEXT and following the linked
list of words and vocabularies until it finds the first word at the top of the chain that has a pointer
(link field address or lfa) of 0. This topmost word will always be EXECUTE in fbForth. See
Chapter 12 “fbForth 2.0 Dictionary Entry Structure” for an explanation of fbForth word fields
and their abbreviations (lfa, nfa, cfa and pfa). If you know the pfa, you can get the other three
field addresses for a given word. You can get the pfa if you know the nfa. These facts are used in
the following example:

: VLIST « Define VLIST to list the CONTEXT vocabulary.
(---) « Takes no parameters and leaves none.
80 OUT ! « Store maximum expected character count in OUT .
CONTEXT @ @ « Get nfa of last defined word in CONTEXT vocabulary.
0 SWAP « Start word counter at 0 and swap nfa to top of stack.
BEGIN « Start indefinite loop.

DUP C@ 3F AND « Dup nfa. Get length byte’s least-significant 5 bits.
OUT @ + « Add name length to OUT .
SCRN_WIDTH @ 3 - « Get screen width – 3 for spaces and end of line.
> IF « Will line be too long?

CR 0 OUT ! « Yes. Go to next line and zero character count.
THEN
DUP ID. « Dup nfa. Display name.
SWAP 1+ SWAP « Get word count to top. Increment it. Swap nfa back.
PFA LFA @ « Get lfa from pfa. Get next word’s nfa from lfa.
SPACE « Emit a space (updates OUT in the process).
DUP 0= « Dup new nfa. Leave true if 0, else false.
PAUSE « Pause if keystroke. Return true if <BREAK>, else false.

OR UNTIL « OR above flags. Exit loop if true, else repeat.
DROP CR . ." words listed" « Drop leftover nfa. Display word count on next line.

;

2 Getting Started 17

 2.5.5 BEGIN … WHILE … REPEAT

BEGIN … WHILE … REPEAT Executes words between BEGIN and WHILE , which
must leave flag to be tested by WHILE. If flag is non-
zero (true), executes words between WHILE and
REPEAT , then jumps back to BEGIN . If flag is zero
(false), continues execution after the REPEAT .

WHILE (flag ---)

The following example starts with a BEGIN … UNTIL loop that waits for the left joystick’s fire
button to be depressed, after which it starts a counter and enters the BEGIN … WHILE … REPEAT
loop. That loop waits for the fire button to be released, counting the number of times through the
loop while that is not happening. After the fire button is released, the WHILE clause is not
executed and the loop exits. FIREDOWN finishes with the display of the number of iterations
through the BEGIN … WHILE … REPEAT loop:

: FIREDOWN « Define FIREDOWN to display loop iterations between press
and release of left joystick’s fire button.

(---) « No parameters in or out.
BEGIN « Start indefinite loop awaiting fire button press.

1 JOYST DROP DROP « Get state of joystick/keyboard #1. Save only char value.
18 = UNTIL « Repeat loop until char is fire-button value (18).
0 « Initialize counter on stack.
BEGIN « Start indefinite loop awaiting release of fire button.

1 JOYST DROP DROP « Get state of joystick/keyboard #1. Save only char value.
18 = WHILE « Continue with loop while char value = 18, else exit.

1+ « Increment loop counter on stack.
REPEAT « Repeat loop.
CR . ." iterations." « Display # of iterations on next screen line.

;

 2.5.6 DO … LOOP

DO … LOOP DO sets up a loop with a loop counter. The stack
contains the first and final values of the loop counter.
The loop is executed at least once. LOOP causes a
return to the word following DO unless termination is
reached.

DO (lim strt ---)

I (--- n) Used between DO and LOOP. Places value of loop
counter on stack.

J (--- n) Used when DO LOOPs are nested. Places value of next
outer loop counter on the stack.

LEAVE (---) Causes loop to terminate at next LOOP or +LOOP.

The following example could have been written more efficiently, but this version makes use of all
of the above words. The word 8X8SRCH defined below looks on the stack for the address of an
8x8 array addr of numbers to search and a number n to match. The result will be only a false flag
if there is no match, but a true flag, row r and column c of the array if there is a match.

18 2.5 Control Structures

You will notice that the stack depth is stored on the return stack before entering the outer DO loop
and moved to the parameter stack when that loop is exited to then calculate the difference. The
reason for this maneuver is that there is no way for 8X8SRCH to anticipate how many cells there
may be on the stack below n before 8X8SRCH executes:

: 8X8SRCH « Define 8X8SRCH to search an 8x8, row-major array for a
number.

(n addr --- F | c r T) « In: n = number to match; addr = array address. Out:
false (0), if not found—or c = column; r = row; true
(non-zero), if found.

DEPTH >R « Store stack depth to return stack to check at end.
8 0 DO « Array row loop.

8 0 DO « Array column loop.
OVER OVER « Copy n and addr to top of stack.
J 8 * I + « Convert row r and column c to address offset into array.
+ @ « Add offset to addr and get value at that location.
= IF « Do we have a match to n?

DROP DROP « Yes. DROP top 2 numbers from the stack.
I J 1 LEAVE « Leave column c, row r and 1 for outer loop test. Leave

inner loop when we next get to LOOP .
ELSE «

0 « No. Leave 0 for outer loop test.
THEN

LOOP « Inner loop end.
IF « Did we have a match?

1 « Yes. Leave true (1) [stack now: c r 1].
LEAVE « Leave outer loop at LOOP .

THEN
LOOP « Outer loop end.
DEPTH R> - « Get current stack depth, previous depth and difference.
2 = IF « # cells on stack out of loops = 2?

DROP DROP 0 « Yes. Loop exhausted with no match. DROP everything
and leave only false (0).

THEN
;

The following example from the graphics primitives of the resident dictionary uses decimal
numbers instead of hexadecimal. It initializes the screen in multicolor graphics mode.

Note that I (containing loop’s index) on the fourth line is the same index as J (next outer loop’s
index) on the eighth line and not the same as I on the eighth line. The definitions of I and J are
not equivalent, but in this situation they reach the same cell on the return stack to get the index of
the outer loop:

: MINIT (---) « Define MINIT to initialize multicolor mode. It takes no
parameters and leaves none.

24 0 DO « Row loop: 24 = loop limit; 0 = index start.
0 « Initialize column counter on stack for use in inner loop.
I 4 / 32 * « Calculate inner loop index start from current value of outer

loop’s index I .

2 Getting Started 19

DUP 32 + « DUP it and add 32 to get inner loop limit.
SWAP « Now, inner loop index start is on top of stack.
DO « Char# loop.

DUP J 1 I HCHAR « Get 4 values to stack for use by HCHAR : DUP column
counter, get row from index J of outer loop; 1 char; char# I .

1+ « Increment column counter left on stack.
LOOP « Inner loop end.
DROP « DROP column counter still on stack.

LOOP « Outer loop end.
;

 2.5.7 DO … +LOOP

DO … +LOOP DO as above. +LOOP adds top stack value to loop
counter (index).DO (lim strt ---)

+LOOP (n ---)

There may be times you will want your loop index to step by more than 1 or to step down instead
of up. For that, you need +LOOP .

The following example from the resident dictionary is the definition of the fbForth word .S ,
which nondestructively displays the stack contents. .S starts by displaying “| ” to indicate the
bottom of the stack. It then displays the numbers starting at the bottom of the stack, which is
marked by the value in user variable S0 .

The reason we need +LOOP is that, though we say that S0 marks the bottom of the stack, in
actuality it is a roof because the stack grows downward from high memory. The first cell on the
stack is the first step below this roof. If there is at least one number on the stack and you want to
read it, you would need to subtract 2 from the value in S0 to get its address. The upshot of all
this is that we need a loop that decrements the stack address by 2:

: .S (---) « Define .S to nondestructively display the stack contents. It takes no
parameters and leaves none.

CR « Start display on new line.
SP@ 2- « Get address of top of stack and go 1 cell beyond, which will be the

loop limit.
S0 @ 2- « Get address of stack base and adjust to address of first cell, which will

be the loop index start.
." | " « Display “| ”.
OVER OVER « Duplicate loop limit and start.
= 0= IF « Are they =? If they are, the stack is empty and we don’t want to go

through the loop, so we test that result for falsity with 0= . Now the
question for IF is, “Are they ≠?”

DO « Yes—they are ≠.
I @ U. « The index I is the address of the current stack cell. Get its contents

and display it as an unsigned number in the current radix.
-2 +LOOP « Loop end. Add -2 to the loop index to get the next stack cell’s address

ELSE « No—we have an empty stack.

20 2.5 Control Structures

DROP DROP « DROP the 2 numbers DO didn’t get to use so we don't pollute the stack.
THEN

;

 2.5.8 CASE … ENDCASE

The CASE structure allows you to select one of many courses of action based on a single value. It
is much neater and easier to read than what would result if you attempted the same thing with a
series of IF and ELSE clauses. It is also much less prone to error.

The catchall ELSEOF … ENDOF clause (see § 2.5.8.2 below) was added as of fbForth 2.0:8 to
make it easier for the programmer to deal with the default case.

 2.5.8.1 Without ELSEOF … ENDOF

CASE
n1 OF … ENDOF

n2 OF … ENDOF

…
nm OF … ENDOF

…
ENDCASE

Looks for a number (n1, n2, …, nm) matching n. If there
is a match, executes the code between the OF … ENDOF
set that immediately follows the matching number,
proceeding then to the code following ENDCASE . If
there is no match, the code after the last ENDOF is
executed, with ENDCASE dropping n from the stack.
Execution then continues after ENDCASE . Code after
the last ENDOF may use n, which is still available, but it
must not consume n. Otherwise, ENDCASE will drop
whatever was under n, adversely affecting program
logic and possibly causing a stack underflow.

CASE (n ---)

 2.5.8.2 With ELSEOF … ENDOF

CASE
n1 OF … ENDOF

n2 OF … ENDOF

…
nm OF … ENDOF

ELSEOF … ENDOF
ENDCASE

Looks for a number (n1, n2, …, nm) matching n. If there
is a match, executes the code between the OF … ENDOF
set that immediately follows the matching number,
proceeding then to the code following ENDCASE . If
there is no match before reaching ELSEOF , ELSEOF
forces a match by duplicating n and calling OF . This
has the effect of preventing ENDCASE or any code
immediately preceding it from ever executing and is
obviously a lot easier on the programmer.CASE (n ---)

The following example is from the graphics primitives that are now part of the resident
dictionary. It uses the console’s keyboard scanning routine KSCAN to check for joystick and
fire-button status of left and right joysticks or corresponding keys on left and right sides of the
keyboard:

HEX « Use radix 16.
: JKBD « Define JKBD to scan for joystick input.

(kbd --- chr xst yst) « In: Keyboard kbd = 1 or 2. Out: Value chr of key
struck, joystick x-status xst and y-status yst.

2 Getting Started 21

8374 C! « Store kbd for keyboard # to scan.
?KEY DROP 8375 C@ « Check for keystroke. DROP char returned and get

KSCAN’s returned value.
DUP 12 = « Duplicate chr and check for fire button.
OVER 0FF = « Duplicate chr again and check for “no keystroke”.
OR IF « Was fire-button or no key depressed?

8377 C@ 8376 C@ « Yes. Leave xst and yst on stack on top of chr.
ELSE « No.

DUP « Duplicate chr for input to CASE .
CASE

04 OF 0FC 4 ENDOF « chr = 4 (NW)? xst = FCh, yst = 4
05 OF 0 4 ENDOF « chr = 5 (N)? xst = 0, yst = 4
06 OF 4 4 ENDOF « chr = 6 (NE)? xst = 4, yst = 4
02 OF 0FC 0 ENDOF « chr = 2 (W)? xst = FCh, yst = 0
03 OF 4 0 ENDOF « chr = 3 (E)? xst = 4, yst = 0
0F OF 0FC 0FC ENDOF « chr = Fh (SW)? xst = FCh, yst = FCh
00 OF 0 0FC ENDOF « chr = 0 (S)? xst = 0, yst = FCh
0E OF 4 0FC ENDOF « chr = Eh (SE)? xst = 4, yst = FCh
ELSEOF DROP 0 0 0 ENDOF « Illegal chr: Drop chr and leave three 0s.

ENDCASE « Never executed due to use of ELSEOF
THEN
0 8374 C! « Restore previous keyboard #.

;

A more extensive example of the CASE structure appears in FBLOCKS in the 64-column editor
(EDT in block 12). EDT is set up with an infinite BEGIN … AGAIN loop that continuously
monitors the keyboard until the exit key, <FCTN+9>, is struck. <FCTN+9>’s ASCII value is 0Fh, so
the OF clause that follows 0Fh executes its contents, ultimately executing QUIT to get back to the
terminal command line interpreter.

 2.6 Input and Output to/from the Terminal

The most common type of terminal input is simply to enter a number at the terminal. This
number will be placed on the stack. The number which is input will be converted according to
the number base stored at BASE . BASE is also used during numeric output. .BASE is the best
way for the user to determine the current radix because BASE @ will always display 10 .

. (n ---) Print a signed number

." (---) Print a string terminated by "

.BASE (--- n) Print the decimal value of the current radix (number base)

.R (n1 n2 ---) Print n1 right-justified in field of width n2

?KEY (--- n) Read keyboard. No key? n = 0. Key? n = ASCII keycode.

?TERMINAL (--- flag) Test if <BREAK> (<CLEAR> on TI-99/4A) pressed

BASE (--- addr) System variable containing number base. To set some base
(e.g., Octal) use the following sequence from any base
above Octal: 8 BASE !

22 2.6 Input and Output to/from the Terminal

CLS (---) Clears screen.

COUNT (addr --- addr+1 n) Move length byte from a packed character string5 at addr to
stack and increment addr—suitable for TYPE

CR (---) Perform a Carriage Return + Line Feed

D. (d ---) Print double-precision (DP) number

D.R (d n ---) Print DP number right-justified in field of width n

DECIMAL (---) Sets the base to Decimal (Base 10)

EMIT (c ---) Type character from stack to terminal

EXPECT (addr n ---) Read n characters (or until CR) from terminal to addr

GOTOXY (col row ---) Places cursor at designated column and row of screen.

HEX (---) Sets the base to Hexadecimal (Base 16)

KEY (--- c) Wait for a keystroke and put its ASCII value on the stack.

PAGE (---) Clears screen and places cursor at top left of screen.

PANEL (x y w h ---) Sets up panel (window) on screen for SCROLL .

SCROLL (dir ---) Scrolls screen panel set up with PANEL in direction dir.

SPACE (---) Type 1 space

SPACES (n ---) Type n spaces

TYPE (addr n ---) Type n characters from addr to terminal

U. (u ---) Print an unsigned number

WORD (c ---) Read one word from input stream delimited by c

WRAP (--- wrap) A user variable containing the wrapping flag for SCROLL .

 2.7 Numeric Formatting

Advanced numeric formatting control is possible with the following words:

NUMBER (addr --- d) Convert string at addr to a double number d

<# (---) Start output string conversion

(d1 --- d2) Convert next, least-significant digit of d1 leaving d2

#S (d --- 0 0) Convert all significant digits from right to left

SIGN (n d --- d) Insert sign of n into number

HOLD (c ---) Insert ASCII character c into string

#> (d --- addr u) Terminate conversion, ready for TYPE

5 A packed character string is a string of characters with a leading length byte. Several fbForth words expect or
produce such strings.

2 Getting Started 23

Formatting is always right to left. Consider that you wish to display a formatted Social Security
Number that is on the stack as the double number, 123456789. The following would do the trick:

<# # # # # 45 HOLD # # 45 HOLD # # # #> CR TYPE
123-45-6789 ok:0

Note that the format as you read the Forth code is the reverse of what is displayed and that 45 is
the decimal value for the ASCII character ‘-’. See the individual definitions, especially <# , in
Appendix D “The fbForth 2.0 Glossary” for more information.

 2.8 Block-Related Words

The following words assist in maintaining source code in the current blocks file on disk as well as
implementing the Forth virtual memory capability:

B/BUF (--- n) Constant: Block size in bytes (always 1024 in
fbForth)

BLK (--- addr) User variable containing current block number
(contains 0 for terminal input)

BLOAD (blk --- flag) Loads binary image at blk created by BSAVE and
returns flag = 0 for successful load. Otherwise,
flag = 1.

BLOCK (n --- addr) Leave address of block n, reading it from the current
blocks file if necessary

BSAVE (addr blk1 --- blk2) Copies to block blk1 ff. of current blocks file the
binary image from addr to HERE , leaving the next
available block blk2.

CLEAR (n ---) Fill block n with blanks

CLR_BLKS (n
1
 n

2
 ---) CLEAR a range of blocks from block n

1
 to block n

2

CLOAD (blk ---) (IS:word) Load block blk if word not in CONTEXT vocabulary.

CPYBLK (---) (IS:n
1
 n

2
 file1

n
3
 file2)

Copy range of blocks from a blocks file to the same
or different blocks file based on input stream (IS)

EMPTY-BUFFERS (---) Erase all buffers

FLUSH (---) Write all updated (dirty) buffers to disk

LIST (n ---) List block n to terminal

LOAD (n ---) Interpret block n

MKBFL (---) (IS: file n) Create blocks file from string and number in IS

SCR6 (--- addr) User variable containing block number most
recently referenced by LIST or EDIT

UPDATE (---) Mark last buffer accessed as updated (dirty)

USEBFL (---) (IS: file) Select a different blocks file from IS

24 2.9 Defining Words

 2.9 Defining Words

The following are defining words. They are used not only to create new Forth words, but in the
case of words using <BUILDS , to create new defining words.

: xxx (---) Begin colon definition of xxx7

; (---) End colon definition

VARIABLE xxx (n ---) Create variable with initial value n

xxx (--- addr) Returns address when executed

FVARIABLE xxx (f ---) Create floating-point (FP) variable with
initial value f

xxx (--- addr) Returns address when executed

CONSTANT xxx (n ---) Create constant with value n

xxx (--- n) Returns n when executed

FCONSTANT xxx (f ---) Create FP constant with value f

xxx (--- n) Returns f when executed

FILE xxx (va1 ad va2 ---) Define a file reference word and associate
PAB address va1, RAM buffer address ad
and VRAM buffer address va2 with it

xxx Makes current the file referenced by xxx by
setting PAB-ADDR , PAB-BUF , PAB-VBUF
to va1, ad, va2, respectively

USER xxx (n ---) Create user variable with offset n bytes
from base address of user variable table

xxx (--- addr) Returns address addr of user variable xxx

ASM: xxx … ;ASM (---) Define assembly-language primitive named
xxx

CODE: xxx … ;CODE (---) Define machine-code primitive named xxx

: xxx <BUILDS …
 DOES>ASM: … ;ASM

Create new defining word xxx with
execution-time, assembly-language routine

6 The name of the word SCR is a throwback to Forth systems like TI Forth that used low-level disk block I/O for
Forth blocks/screens. It is so named to refer to an editable Forth screen because a screen was not required to be
equivalent to a block in fig-Forth. A block was defined as the chunk (block) of disk space read/written in the
process of accessing Forth screens and was not required to be as large as a screen. A screen was composed of one
or more disk blocks. For fbForth, ‘block’ is synonymous with ‘screen’ and contains exactly 1024 bytes regardless
of the chunk (now a 128-byte file record instead of a disk block) read/written from/to a blocks file. Each fbForth
block access processes 8 records/block. SCR was retained simply because it made coding fbForth easier.

7 If you wish to FORGET an unfinished definition, the word likely will not be found. If it is the last definition
attempted, you can make it findable by executing SMUDGE and then FORGETting it.

2 Getting Started 25

: xxx <BUILDS …

 DOES>CODE: … ;CODE

Create new defining word xxx with
execution-time, machine-code routine

: xxx <BUILDS …
 DOES> … ;

Create new defining word xxx with
execution-time, high-level-Forth routine

 2.10 Miscellaneous Words

The following words are relatively common, but don’t fit well into any of the above categories:

' xxx (--- addr) Leave parameter field address (pfa) of xxx . If
compiling, compile address. (tick)

((---) Begin comment. Terminated by)

\ (---) Begin line comment.

, (n ---) Compile n into the dictionary (comma)

ABORT (---) Error termination

ALLOT (n ---) Leave n-byte gap in dictionary

CONTEXT (--- addr) Leave address of pointer to context vocabulary
(searched first)

CURRENT (--- addr) Leave address of pointer to current vocabulary (new
definitions placed there)

DATA[(--- addr n)
(IS:n1 … nn)

Compile numbers until]DATA . Leave address and
number of cells n on stack or in word definition.

DEFINITIONS (---) Set CURRENT to CONTEXT

FORGET xxx (---) Forget all definitions back to and including xxx7

FORTH (---) Set CONTEXT to main Forth vocabulary.

HERE (--- addr) Leaves address of next unused byte in the dictionary

IN (--- addr) User variable containing offset into input buffer.

PAD (--- addr) Leaves address of scratch area (68 bytes above HERE)

PLAY (addr flag ---) Starts sound list at addr, depending on flag.

S" (--- addr | [])
(IS:string")

Store string as packed string at PAD or within a word
definition. Leaves address of length byte.

SAY (addr n ---) Speaks n Speech-Synthesizer words from addr.

SOUND (pitch vol ch# ---) Starts sound generator ch# at pitch and volume vol.

STREAM (addr n ---) Speaks n cells of raw speech data from addr.

VOCABULARY xxx (---) Define new vocabulary.

]DATA (---) Ends number compilation started with DATA[and
updates cell count on stack or in word definition.

26 2.10 Miscellaneous Words

Many additional words are available in fbForth 2.0. The user should consult the remaining
chapters in this manual as well as the glossary (Appendix D) for a complete description. Many of
these words are defined in FBLOCKS and must be loaded by the user via the load options, which
are viewable by typing MENU , before they become available. The word’s description in the
glossary will indicate whether the word is in the resident dictionary or needs to have its definition
loaded from FBLOCKS. If it needs to be loaded, the block where it resides is identified.

3 How to Use the fbForth 2.0 Editors 27

3 How to Use the fbForth 2.0 Editors
Words introduced in this chapter:

CLEAR EDIT TEXT

CLR_BLKS EMPTY-BUFFERS TEXT80

CPYBLK FLUSH USEBFL

ED@ MKBFL WHERE

In the Forth language, programs are divided into blocks. Each Forth block is 16 lines of 64
characters and has a number associated with it. A single-sided single-density (SSSD) TI-99/4A
disk that contains a single DF1288 blocks file that fills the disk can hold 89 Forth blocks
(numbered 19 – 89). There will actually be one sector (256 bytes) left because disk and file
overhead occupy 3 sectors and the blocks file occupies 356 sectors (89 ∙ 4), which leaves one
sector of a possible 360 unoccupied. A program may occupy as many Forth blocks as necessary.

If you plan to edit the system blocks file, FBLOCKS, you should back it up with a suitable disk
manager program or a combination of MKBFL (see below) and CPYBLK (see § 3.5 “Block-Copying
Utility”) before modifying it.

The editor uses the current blocks file, which is DSK1.FBLOCKS at system startup. You can
change the current blocks file to one of your choosing, e.g., DSK2.MYBLOCKS, with USEBFL
by typing on the terminal:

USEBFL DSK2.MYBLOCKS ok:0

If DSK2.MYBLOCKS does not exist, you must first create it with an appropriate number of
blocks by executing MKBFL , being careful not to exceed the capacity of the disk, followed by
USEBFL :

MKBFL DSK2.MYBLOCKS 80 ok:0
USEBFL DSK2.MYBLOCKS ok:0

Now you are ready to begin editing the selected blocks file.

 3.1 Forth Block Layout Caveat

As indicated above, Forth blocks are laid out in 16 lines of 64 characters each. However, you
should be aware that the lines have no actual delimiters, i.e., there are no carriage-return or line-
feed characters at the end of a Forth-block line. This means that one line wraps around to the
next line with no intervening white-space such that a word ending on one line will be
concatenated with a word that starts on the next line if there is no intervening space. This will
usually be nonsense to the system and generate an error message when the block is loaded,
indicating that the unintended word has not been defined. Worse, it can result in an unintended
existing word such as -DUP instead of - DUP or +LOOP instead of + LOOP .

8 DF128 refers to the file format: Display data type, Fixed record length, 128-byte logical record length

9 For fbForth, the first block of a blocks file is always numbered 1. This is different from most fig-Forth systems,
including TI Forth, which start at block number 0.

28 3.2 The Two fbForth Editors

 3.2 The Two fbForth Editors

There are two Forth editors available in fbForth 2.0. The first, which is in the resident
dictionary, operates in TEXT or TEXT8010 mode. It will be referred to as the 40/80-column
editor11. Each block is displayed in roughly two halves (left and right) in normal sized characters
in TEXT mode.

The full block is displayed in TEXT80 mode.

10 TEXT80 mode should only be invoked if your computer is equipped with a VDP that can display 80 columns of
text. No harm is done to VRAM except that what shows on the screen will be unpredictable. You can easily
restore 40-column mode by executing TEXT , even though you may not be able to see what you are typing.

11 The 40/80-column Forth editor may only be used when the computer is in TEXT or TEXT80 mode (see Chapter 6).
For example, if the 40/80-column editor is loaded, don’t type EDIT while you are in SPLIT or SPLIT2 mode
because the screen will be corrupted and the computer will likely need to be restarted.

3 How to Use the fbForth 2.0 Editors 29

The second, which is loaded by 6 LOAD , operates in SPLIT mode, a modified bitmap mode. It
allows you to view an entire block at once on a 40-column screen. However, the characters are
very small. It will be referred to as the 64-column editor.

If you load the 64-column editor, that is the only one you will be able to use. If, after you load it,
you wish to use the 40/80-column editor, you will need to remove the 64-column editor with

FORGET TCHAR ok:0

or by restarting with COLD or MON . Use whichever editor you prefer. Editing instructions are
identical for each.

30 3.3 Editing Instructions

 3.3 Editing Instructions

You should insure that the blocks you are editing are filled with only displayable characters
(blanks, if starting from scratch). If you just created the file you are editing with MKBFL , all
blocks have already been filled with blanks. A single block may be filled with blanks before it is
edited by typing a block number and CLEAR :

 1 CLEAR ok:0

will prepare block 1 for use by the editor.

A range of blocks may be cleared to blanks by executing CLR_BLKS with the first and last blocks
of the range on the stack:

1 5 CLR_BLKS ok:0

You may begin writing on block 1 or on any block you wish. To bring a block from the file into
the editor, type the block number followed by the word EDIT :

 1 EDIT

The above instruction will bring the contents of block 1 into view. If you did not CLEAR the
block before entering the editor and the block contains non-displayable characters or other
undesirable information, it may be easier to simply exit the editor temporarily and clear the block
before writing to it. To exit the editor, press the <BACK> (<FCTN+9>) function key on your
keyboard. To clear the block, type the block number and the word CLEAR as above.

To re-enter the editor, you do not have to type 1 EDIT again. A special Forth word,

 ED@

will return you to the last block you were editing.

Upon entering the editor, the cursor is located in column 0 of line 0. It is customary to use line 0
for a comment describing the contents of that block. Type a comment that says “PRACTICE
BLOCK” or something to that effect. Do not forget that all comments must begin (12 and end with
a) . You may also use \ to start a rest-of-line comment.

If you are using the 40/80-column editor in TEXT mode, you have probably noticed that only 35
columns (0–34) of the 64 available columns are visible on your terminal. To see the rest of the
block, type any characters on line 1 until you reach the right margin. Now type a few more
characters. Notice that the block is now displaying columns 29 – 63. Press <ENTER> to move to
the beginning of the next line.

In the 40/80-column editor, you will notice that a keystroke menu is displayed at the bottom of
the screen just below the editing window. Though it is cryptic, it should aid in remembering the
keystrokes for the editing commands. This feature was inspired by Mark Wills’ TurboForth1 and
the idea and some code was used with his permission.

12 The left parenthesis must be followed by at least 1 space. Press <ENTER> to move to the next line.

3 How to Use the fbForth 2.0 Editors 31

The function keys on your keyboard each perform a special editing function:

key function

<FCTN+S>, (←) moves the cursor one position to the left.

<FCTN+D>, (→) moves the cursor one position to the right.

<FCTN+E>, (↑) moves the cursor up one position.

<FCTN+X>, (↓) moves the cursor down one position.

<DELETE> (<FCTN+1>) deletes the character on which the cursor is placed.

<INSERT> (<FCTN+2>) inserts a space to the left of the cursor moving the rest of the line right
one space. Characters may be lost off the end of the line.

<AID> (<FCTN+7>) erases from the cursor to the end of a line and saves the erased
characters in PAD. They may be placed at the beginning of a new line
by pressing <REDO>. <REDO> inserts a line just above where the cursor
is and places the contents of PAD there.

<BEGIN> (<FCTN+5>) 40/80-column editor: in TEXT mode, moves the cursor 29 positions to
the right if the cursor is on the left half of a block. Otherwise, it moves
the cursor 29 positions to the left. This key can be used to toggle
between the left and right half of a block. In TEXT80 mode, places the
cursor in the upper left corner.

64-column editor: places the cursor in the upper left corner

<ERASE> (<FCTN+3>)
<REDO> (<FCTN+8>)

are used in combination to pick up lines and move them elsewhere on
the screen. <ERASE> picks up one line while erasing it from view.
<REDO> inserts this line just above the line on which the cursor is
placed. Both <ERASE> and <REDO> may be used repeatedly to erase
several lines from view or to insert multiple copies of a line.

<CTRL+8> will insert a blank line just above the line the cursor is on.

<CTRL+V> will tab forward by words.

<FCTN+V> will tab backwards by words.

Experiment with these features until you feel you understand each of their functions. Erase the
line you typed from the screen and type a sample program for practice.

The Forth editor allows you to move forward or backward a block without leaving the editor.
Pressing <CLEAR> (<FCTN+4>) will read in the succeeding block. Pressing <PROCEED>
(<FCTN+6>) will read in the preceding block.

If an error occurs during a LOAD command, typing the word WHERE will bring you back into the
editor and place the cursor immediately after the word causing the error, i.e., just in front of the
word that was next to be read if there had been no error.

The word FLUSH is used to force the disk buffers that contain data no longer consistent with the
copy in the blocks file to be written to the file. Use this word at the end of an editing session to
be certain your changes are written to the disk. The word EMPTY-BUFFERS can be used to clear

32 3.3 Editing Instructions

all Forth buffers and thereby undo any unsaved changes. This is not guaranteed to work except
on the current block due to how the editors function when acquiring buffer space.

One last note about blocks: Though your word definitions can span more than one block, you
should try to insure that any given word is defined in a single block. This aids in clarity and the
good Forth-programming practice of keeping word definitions short.

 3.4 Changing Foreground/Background Colors of 64-Col Editor

The black-on-gray color scheme of the 64-column editor and the white-on-dark-blue colors of the
8-line text area at the bottom of the screen can be changed to whatever foreground/background
combinations you would like by making minimal changes to Forth code on block 12 of
FBLOCKS. There are three chunks of commented-out code on lines 1 and 2 (see following) that
offer templates for changing the editor’s colors, the screen background color and the 8-line text
area, in that order:

1: : EDT VDPMDE @ >R SPLIT (0 1000 040 VFILL) (0F 7 VWTR)
2: (1000 800 01B VFILL) CINIT !CUR R/C CGOTOXY

If you want to change the editor’s colors to dark blue on transparent, un-comment the first chunk
of code,

(0 1000 040 VFILL)

by removing the parentheses:

0 1000 040 VFILL

For some other combination, change 040 to 0XY , where X is the desired hexadecimal digit for the
foreground color and Y is the desired background color digit.

To change the screen color (including the border color), un-comment the second chunk of code,

(0F 7 VWTR)

which will change the screen color to white:

0F 7 VWTR

If you do not want white, change the 0F to the screen color of your choice.

The final chunk of commented code,

(1000 800 01B VFILL)

only requires un-commenting to get black on yellow for the bottom 8-line section:

1000 800 01B VFILL

Change the 01B to any desired combination of colors as described above for the editor’s colors.

You may also want to change the color of the 64-column editor ’s cursor from white to some other
color that makes sense with your new color scheme. If so, you will need to change the color of
the cursor sprite in the word CINIT (block 7) from 0 1 F 5 0 SPRITE to 0 1 new_color 5
0 SPRITE , where new_color is your new color (see § 6.3 “Color Changes”).

3 How to Use the fbForth 2.0 Editors 33

 3.5 Block-Copying Utility

You can copy a range of blocks to the same or another blocks file with CPYBLK . This utility is
not part of the resident dictionary, so you will need to load block 19 (19 LOAD) from
FBLOCKS. Typing MENU will show you this option as well as ensure that FBLOCKS is the
current blocks file. Usage instructions are displayed after CPYBLK is loaded:

19 LOAD

CPYBLK copies a range of blocks to the
same or another file, e.g.,

CPYBLK 5 8 DSK1.F1 9 DSK2.F2
will copy blocks 5-8 from DSK1.F1 to
DSK2.F2 starting at block 9.
 ok:0

It should be noted that CPYBLK will safely copy overlapping source and destination block ranges
when the source and destination files are the same. First, CPYBLK checks to see whether the
source and destination files are the same. If they are, it next checks to see whether the ranges
overlap. If they do, it checks to see whether the number of blocks to be copied exceeds the
distance between start blocks of source and destination. If it does, then, and only then, it will
change the direction of copying to be end to start blocks. It will also reverse the start and end
block numbers if you enter a larger number for the start block than for the end block.

If something goes wrong, you may need to restore to current status the blocks file you were using
before you invoked CPYBLK . See USEBFL in Appendix D .

34 4 Memory Maps

4 Memory Maps
The following diagrams illustrate the memory allocation in the TI-99/4A system. For more
detailed information, see the Editor/Assembler Manual.13

The VDP memory can be configured in many ways by the user. The fbForth 2.0 system
provides the ability to set up this memory for each of the VDP’s 5 modes of operation (Text80,
Text, Graphics, Multicolor and Graphics2). The allocation of memory for these modes is shown
on the VDP Memory Map. The first four modes are shown on the left side of the figure, the
Graphics2 mode on the right side. The area at 03C0h is used by the GPL transcendental functions
in all modes for a rollout area, which was a problem for TI Forth and fbForth 1.0. Fortunately,
you do not need to worry about this now because fbForth 2.0’s floating point math package does
not use them (see Chapter 7 The Floating Point Support Package). Note that the VDP RAM is
accessed from the 9900 only through a memory mapped port and is not directly in the processor’s
address space.

The only CPU RAM on a true 16-bit data bus is in the console at 8300h. Because this is the
fastest RAM in the system, the Forth Workspace and the most frequently executed code of the
interpreter are placed in this area to maximize the speed of the fbForth 2.0 system. The use of
the remainder of the RAM in this area is dictated by the TI-99/4A’s resident operating system.

The 32 KiB memory expansion is divided into an 8 KiB piece at 2000h and a 24 KiB piece at
A000h. The small piece contains BIOS and utility support for fbForth 2.0 as well as 4 KiB of
disk buffers, the Return Stack and the User Variable area. The large piece of this RAM contains
the user dictionary, the Parameter Stack and the Terminal Input Buffer.

 4.1 VDP Memory Map

Address Address

0000h Graphics & Multicolor
Screen Image Table

bytes: 300h

Text
Screen

Ta

40 Columns
TEXT

 Mode
 Image
ble

80 Columns
TEXT80

Bitmap Color Table 1800h 0000h

0300h Sprite Attribute List 80h

0380h Color Table 20h

03A0h Unused 20h 3C0h 780h

03C0h VDP Rollout Area 20h

03E0h Value Stack 80h

0460h PABS etc. 320h

0780h Sprite Motion Table 80h [Value Stack for TEXT80]

13 Hexadecimal (base 16) notation for integers in this manual is indicated when a string of 1 – 4 hexadecimal digits
(0 ‒ 9, A ‒ F) is followed by ‘h’. For example, 2F0Eh is a hexadecimal integer equivalent in value to decimal integer
12046 and Ah is decimal 10. The ‘h’ is never typed into the Forth terminal or on Forth blocks. It is used in this
manual only to avoid confusion. The notation used in the Editor/Assembler Manual (use of a preceding ‘>’ instead
of a trailing ‘h’) is only used in Chapter 9 for the conventional assembler examples, where it is required as input to
the Editor/Assembler module.

4 Memory Maps 35

Address Address

0800h Pattern & Sprite Descriptor Tables
0 – 127 400h

0C00h 128 – 255 400h

1000h fbForth’s Disk Buffer 80h

1080h PAB: User Screen Font File 46h

10C6h PAB: Current Blocks File 46h

110Ch PAB: Second Blocks File 46h

1152h Unused [PABS points here for TEXT80]

 2686h

Bitmap Screen Image Tab. 300h 1800h

Sprite Attribute List 80h 1B00h

fbForth’s Disk Buffer 80h 1B80h

PAB: User Screen Font File 46h 1C00h

PAB: Current Blocks File 46h 1C46h

PAB: Second Blocks File 46h 1C8Ch

User PABs, etc. 2EEh 1CD2h

Stack for VSPTR 40h 1FC0h

Bitmap Pattern Descriptor Table
 1800h

2000h

37D8h Disk Buffer Region for 3 Simultaneous Disk Files
828h Sprite Descriptor Table 1DEh 3800h

3FFFh
Disk Buffer Region: 2 Files

 622h
39DEh
3FFFh

 4.2 CPU Memory

Address

0000h Console ROM

2000h Low Memory Expansion
fbForth 2.0 Block Buffers, User Variable Table, System Support,
Return Stack

4000h Peripheral ROMs for DSRs

6000h fbForth 2.0 ROMs (including Resident Dictionary) in Command Module

8000h Memory-mapped Devices for VDP, GROM, SOUND, SPEECH,
CPU Scratchpad RAM at 8300h – 83FFh

A000h
FFFFh

High Memory Expansion
User Dictionary (up to Parameter Stack & TIB at high end)
Parameter Stack, Terminal Input Buffer (TIB)

36 4.3 CPU RAM Pad

 4.3 CPU RAM Pad

Address14

8300h
831Fh

fbForth’s Workspace (see § 9.2)

8320h
832Dh

‒FREE‒15 Eh

832Eh
8347h

fbForth’s Inner Interpreter, etc.

8348h
8349h

‒FREE– (unless using Floating Point Library) 2

834Ah
8351h

FAC (Floating Point Accumulator)

8354h Floating Point Error
8355h Floating Point String↔Number Conversion Options make use

 of these 3 bytes8356h
8357h

Subroutine Pointer for DSRs

835Ch
8363h

ARG (Floating Point Argument Register)

836Eh
836Fh

VSPTR (Value Stack Pointer)

8370h
8371h

Highest Available Address of VDP RAM

8372h Least Significant Byte of Data Stack Pointer
8373h Least Significant Byte of Subroutine Stack Pointer
8374h Keyboard Number to be Scanned
8375h ASCII Keycode Detected by Scan Routine
8376h Joystick Y-status
8377h Joystick X-status
8379h VDP Interrupt Timer
837Ah Number of Sprites that can be in Automotion
837Bh VDP Status Byte Bit 016 On during VDP Interrupt

Bit 1 On when 5 Sprites on a Line
Bit 2 On when Sprite Coincidence
Bits 3-7 Number of 5th Sprite on a Line

837Ch GPL Status Byte Bit 0 High Bit
Bit 1 Greater than Bit
Bit 2 On when Keystroke Detected (COND)
Bit 3 Carry Bit
Bit 4 Overflow Bit

837Dh VDP Character Buffer
837Eh Current Screen Row Pointer
837Fh Current Screen Column Pointer
8380h Default Subroutine Stack
83A0h Default Data Stack

14 Locations omitted are not used by fbForth, but may be used by system routines.

15 This “free” block is not always available to the user. It is used for temporary storage by the text/font editors, the
Floating Point Library and the following resident words: EXPECT WORD USEFFL DATA[

16 Bit 0 = high order bit.

4 Memory Maps 37

Address

83C0h
83C2h

83C4h
83C6h
83C7h
83C8h
83C9h
83CAh
83CCh
83CEh
83D0h
83D4h
83D6h
83D8h
83DAh

Random Number Seed (Begin Interrupt Workspace)
Flag Bit 0 Disable All of the Following

Bit 1 Disable Sprite Motion
Bit 2 Disable Auto Sound
Bit 3 Disable System Reset Key (Quit)

Link to ISR Hook
Default keyboard argument – 3 (i.e., 0 – 2)
Keyboard column 0 (special keys)
Scan code of current key, whatever keyboard type
Ditto for keyboard type 4 (Pascal)
Ditto for keyboard type 5(Standard) [Keyboard Debounce?]
Sound List Pointer (VDP RAM)
Sound List Initiation (set to 01h) & Countdown Byte
Search Pointers for GROM & ROM
Contents of VDP Register 1
Screen Timeout Counter
Return Address Saved by Scan Routine
Player Number Used by Scan Routine

C R0
 o R1
 n
 s
 o
 l R2
 I e R3
 S
 R R4
W
 o R5
 r R6
 k R7
 s R8 – R9
 p R10
 a R11
 c R12
 e R13 – R15

83E0h
83E2h
83E4h
83E6h
83E8h
83EAh
83ECh
83F2h
83F4h
83FAh
83FCh
83FEh

 G R0 «Data (Src)
 P R1 «Address (Src)
 L R2 «Data (Dst)
W R3 «Address (Dst)
 o R4 «MSB: (Src Flag) LSB: (Dst Flag)
 r R5 «MSB: Word Command Flag
 k R6 – R8

s R9 «MSB: GPL Code
 p R10 – R12
 a R13 «Current GROM Port (9800h)
 c R14 «Timer Tick & Flags
 e R15 «VDPWA (8C02h)

 4.4 Low Memory Expansion

2000h XML Vectors 0010h bytes

2010h fbForth Block Buffers (4) 1010h

3020h System Support for fbForth 0698h

36B8h User Variable Table 0080h

3738h Assembler Support , Trampoline Code, ... 03AEh

3AE6h
3FFFh

↑ 051Ah
Return Stack

 4.5 High Memory Expansion

A000h End of Resident fbForth Vocabulary
0030h

A030h User Dictionary Space
↓ 5F70h
↑

Parameter Stack

FFA0h
FFF1h

Terminal Input Buffer 0052h

38 5 System Synonyms and Miscellaneous Utilities

5 System Synonyms and
Miscellaneous Utilities

Words introduced in this chapter:

' RANDOMIZE VFILL

, RND VLIST

.S RNDW VMBR

: (traceable) SEED VMBW

C, TRACE VMOVE

CLS TRIAD VOR

DSRLNK TRIADS VSBR

DUMP TROFF VSBW

GPLLNK TRON VWTR

INDEX UNTRACE VXOR

MYSELF VAND XMLLNK

Several utilities are available to give you simple access to many resources of the TI-99/4A Home
Computer. These are defined as system synonyms17.

Also included in this chapter are block-listing utilities, special trace routines, random number
generators and a special routine that allows recursion.

The descriptions that follow in tabular form include the abbreviation “instr” for “instruction”.

 5.1 System Synonyms

The system synonyms are part of the resident dictionary in fbForth 2.0. These utilities allow
you to

• change the display;

• access the Device Service Routines for peripheral devices such as RS232 interfaces and
disk drives;

• link your program to GPL and Assembler routines; and

• perform operations on VDP memory locations.

17 The term “system synonym” was coined by the developers of TI Forth and likely means “system utilities identical
to Editor/Assembler utilities in name and function”. A handful of the system synonyms here are actually enhanced
utilities, but are still based on Editor/Assembler utilities.

5 System Synonyms and Miscellaneous Utilities 39

 5.1.1 VDP RAM Read/Write

The first group of instructions enables you to read from and write to VDP RAM. Each of the
following fbForth 2.0 words implements the Editor/Assembler (E/A) utility with the same name.
Two words have no equivalent E/A utility: VFILL was introduced in TI Forth and VMOVE was
new in fbForth 1.0.

VSBW (b vaddr ---)

Writes a single byte to VDP RAM. It requires 2 parameters on the stack: a byte b to be
written and a VDP address vaddr.

base byte vaddr instr

HEX A3 380 VSBW

The above line, when interpreted will change the base to hexadecimal, push A3h and 380h
onto the stack and, when VSBW executes, places the value A3h into VDP address 380h.

VMBW (addr vaddr count ---)

Writes multiple bytes to VDP RAM. You must first place on the stack a source address at
which the bytes to be written are located. This must be followed by a VDP address (or
destination) and the number of bytes to be written.

base addr vaddr count instr

HEX PAD 808 4 VMBW

reads 4 bytes from PAD and writes them into VDP RAM beginning at 808h.

VSBR (vaddr --- byte)

Reads a single byte from VDP RAM and places it on the stack. A VDP address is the
only parameter required.

base vaddr instr

HEX 781 VSBR

places the contents of VDP address 781h on the stack.

VMBR (vaddr addr count ---)

Reads multiple bytes from VDP and places them at a specified address. You must specify
the VDP source address, a destination address and a byte count.

base vaddr addr count instr

HEX 300 PAD 20 VMBR

reads 32 bytes beginning at 300h and stores them into PAD.

VFILL (vaddr count byte ---)

If you wish to fill a group of consecutive VDP memory locations with a particular byte, a
VFILL instruction is available. You must specify a beginning VDP address, a count and
the byte you wish to write into each location.

40 5.1 System Synonyms

base vaddr count byte instr

HEX 300 20 0 VFILL

fills 32 (20h) locations, starting at 300h, with zeroes.

VMOVE (vaddr1 vaddr2 count ---)

Copies count bytes from one location (vaddr1) in VDP RAM to another (vaddr2).

base vaddr1 vaddr2 count instr

HEX 1500 1640 100 VMOVE

copies 256 (100h) bytes from vaddr1 to vaddr2. If the ranges overlap, it is only safe to
copy from a higher address to a lower address because the copy proceeds from the lowest
address of the source block to the highest. If the copy were in the other direction, all the
bytes in the overlapping region would be trashed before they could be copied.

 5.1.2 Extended Utilities: GPLLNK, XMLLNK and DSRLNK

The next group of instructions allows you to implement the Editor/Assembler instructions
GPLLNK, XMLLNK and DSRLNK. To assist the user, the Forth instructions have the same
names as the Editor/Assembler utilities. Consult the Editor/Assembler Manual, § 16.2.2 –
§ 16.2.4 for more details.

GPLLNK (addr ---)

Allows you to link your program to Graphics Programming Language (GPL) routines.
You must place on the stack the address vector of the GPL routine to which you wish to
link as well as provide what additional information that routine may require.

base set up FAC for call addr instr

HEX 900 834A ! 16 GPLLNK

branches to the address of the GPL routine indicated by address vector 16h, which loads
the TI-99/4A standard character set into VDP RAM. It then returns to your program.

XMLLNK (addr ---)

Allows you to link a Forth program to any executable machine-code routine with vectors
in ROM or low-RAM (2000h) or to branch to a routine located in high RAM
(8000h – FFFFh). The instruction expects to find on the stack an address vector encoding
either the address of and offset into a ROM/low-RAM table or a high-RAM address.

base addr instr

HEX 800 XMLLNK

accesses the floating-point (FP) multiplication routine, located in console ROM. The
addr value (800h) in this case is a reference to offset 10h into the console-ROM table for
FP routines that starts at 0D1Ah. 0D1Ah is the first table pointed to in the XML jump table
(0CFAh) in console ROM. Offset 10h (0D2Ah) of the FP table contains the address in

5 System Synonyms and Miscellaneous Utilities 41

console ROM of said FP multiplication routine, which executes and returns to your
program.

Note: The above FP multiplication routine requires the FP multiplier in FAC and the FP
multiplicand in ARG. The product is returned in FAC. The fbForth 2.0 FP library
(Chapter 7 “The Floating Point Support Package”) no longer uses the code in the above
example for FP multiplication.

DSRLNK (---)

Links a Forth program to any Device Service Routine (DSR) in ROM. Before this
instruction is used, a Peripheral Access Block (PAB) must be set up in VDP RAM. A
PAB contains information about the file to be accessed. See the Editor/Assembler
Manual and Chapter 8 “Access to File I/O Using TI-99/4A Device Service Routines” of
this manual for additional setup information. DSRLNK needs no parameters on the stack.

The Editor/Assembler version of DSRLNK also allows linkage with a subroutine in the
DSR, but the fbForth 2.0 version does not. If you need this functionality, you might
define the following word (DSRLNK-SP) in decimal mode:

DECIMAL : DSRLNK-SP 10 14 SYSTEM ;

See the Editor/Assembler Manual for details on this form of the call to the DSRLNK
utility. You will also need to consult the DSR’s specifications because this form of access
is at a lower level, with each subroutine usually requiring information that differs from
the PAB set up for DSRLNK .

 5.1.3 VDP Write-Only Registers

The VDP contains 8 special write-only registers. In the Editor/Assembler, a VWTR instruction is
used to write values into these registers. The Forth word VWTR implements this instruction.

VWTR (b n ---)

VWTR requires 2 parameters; a byte b to be written and a VDP register number n.

base b n instr

HEX F5 7 VWTR

The above instruction writes F5h into VDP write only register number 7. This particular
register controls the foreground and background colors in text and text80 modes. The
foreground color is ignored in other modes. Executing the above instruction will change
the foreground color to white and the background color to light blue.

 5.1.4 VDP RAM Single-Byte Logical Operations

VAND , VOR and VXOR (b vaddr ---)

The Forth instructions VAND , VOR and VXOR greatly simplify the task of performing a
logical operation on a single byte in VDP RAM. Normally, 3 programming steps would

42 5.1 System Synonyms

be required: a read from VDP RAM, an operation, and a write back into VDP RAM. The
above instructions each get the job done in a single step. Each of these words requires 2
parameters, a byte b to be used as the second operand and the VDP address vaddr at
which to perform the operation. The result of the operation is placed back into vaddr.

base b vaddr instr

HEX F0 804 VAND

HEX F0 804 VOR

HEX F0 804 VXOR

Each of the above instructions reads the byte stored at 804h in VDP RAM, performs an
AND, OR or XOR on that byte and F0h, and places the result back into VDP RAM at
804h.

 5.2 Disk Utilities

FORTH-COPY , DTEST , DISK-HEAD and FORMAT-DISK are not supported in fbForth 2.0. If you
need the functionality of these words, use one of the various disk manager cartridges or programs
available such as TI’s Disk Manager 2 cartridge, CorComp’s Disk Manager, Quality 99
Software’s Disk Manager III or Fred Kaal’s Disk Manager 2000 (available on his website,
www.ti99-geek.nl). You can, of course, use the above words in TI Forth.

SCOPY and SMOVE have been replaced by CPYBLK , which is described in § 3.5 “Block-Copying
Utility”.

 5.3 Listing Utilities

There are three words defined in fbForth 2.0 starting in block 19 of FBLOCKS, which make
listing information from a Forth blocks file very simple. The following descriptions refer to
FBLOCKS dated 01SEP2014 or later to insure that you can print the first 3 blocks. If the file
contains a number of blocks not evenly divisible by 3, printing the last 1 or 2 blocks will cause a
file error message to be printed when TRIAD tries to read past the end of the blocks file.

TRIAD (blk ---)

The first, called TRIAD, requires a block number on the stack. When executed, it will end
with a block number evenly divisible by three. Blocks that contain non-printable
information will be skipped. If your RS232 printer is not on Port 1 and set at 9600 Baud,
you must modify the word SWCH on your System disk.

TRIADS (blk1 blk2 ---)

The second instruction, called TRIADS, may be thought of as a multiple TRIAD. It
expects start and end block numbers on the stack. TRIADS executes TRIAD as many
times as necessary to cover the specified range of blocks.

5 System Synonyms and Miscellaneous Utilities 43

INDEX (blk1 blk2 ---)

The INDEX instruction allows you to list to your terminal line 0 (the comment line) of
each of a specified range of blocks. INDEX expects start and end block numbers on the
stack. If you wish to temporarily stop the flow of output in order to read it before it
scrolls off the screen, simply press any key. Press any key to start up again. Press
<BREAK> (<CLEAR> or <FCTN+4>) to exit execution prematurely.

 5.4 Debugging

 5.4.1 Dump Information to Terminal

Loading block 16 loads the useful fbForth word DUMP for getting information for debugging
purposes. DUMP is 80-column aware if you have successfully executed TEXT80 (see Chapter 3
“How to Use the fbForth 2.0 Editors” for some discussion of 80-column text mode).

DUMP (addr count ---)

The DUMP instruction allows you to list portions of memory to your terminal. DUMP
requires two parameters, an address addr and a byte count count. For example,

base addr count instr

HEX 2010 20 DUMP

will list 32 (20h) bytes of memory beginning at address 2010h to your terminal:

2010: 0001 2820 6662 466F ..(fbFo
2018: 7274 6820 5745 4C43 rth WELC
2020: 4F4D 4520 5343 5245 OME SCRE
2028: 454E 2D2D 2D4C 4553 EN---LES
 ok:0

Press any key to temporarily stop execution in order to read the information before it
scrolls off the screen. Press any key to continue. To exit this routine, press <BREAK>.

Two other useful words, VLIST and .S , are now part of fbForth 2.0’s resident dictionary and
are available at any time.

VLIST (---)

VLIST is 80-column aware and lists to your terminal the names of all words currently
defined in the CONTEXT vocabulary. This instruction requires no parameters and may be
halted and started again by pressing any key as with INDEX in the previous section. When
finished or aborted with <BREAK>, VLIST displays the number of words listed.

.S (---)

The Forth word .S allows you to nondestructively view the parameter stack contents. It
may be placed inside a colon definition or executed directly from the keyboard. The
word SP! should be typed on the command line before executing a routine that contains
.S . This will clear any garbage from the stack. The ‘|’ symbol is printed to represent
the bottom of the stack. The number appearing farthest from the | is the most accessible
stack element, i.e., top of the stack:

44 5.4 Debugging

.S
| 1 8 189 ok:3

 5.4.2 Tracing Word Execution

This section is based on the following article available at www.forth.org :

Paul van der Eijk. 1981. Tracing Colon-Definitions. Forth Dimensions 3:2, p. 58.

A special set of instructions in block 18 of FBLOCKS allows you to trace the execution of any
colon definition. Executing the TRACE instruction will cause all following colon definitions to be
compiled in such a way that they can be traced. In other words, the Forth word : takes on a new
meaning. To stop compiling under the TRACE option, type UNTRACE. When you have finished
debugging, recompile the routine under the UNTRACE option.

After instructions have been compiled under the TRACE option, you can trace their execution by
typing the word TRON before using the instruction. TRON activates the trace. If you wish to
execute the same instruction without the trace, type TROFF before using the instruction.

The actual trace will print the word being traced, along with the stack contents, each time the
word is encountered. This shows you what numbers are on the stack just before the traced word is
executed. The | symbol is used to represent the bottom of the stack. The number printed closest
to the | is the least accessible while the number farthest from the | is the most accessible number
on the stack. Here is a sample TRACE session:

DECIMAL ok:0
TRACE ok:0 (compile next definition with TRACE option)
: CUBE DUP DUP * * ; ok:0 (routine to be traced)
UNTRACE ok:0 (don’t compile next definition with TRACE option)
: TEST CUBE ROT CUBE ROT CUBE ; ok:0
TRON ok:0 (want to execute with a TRACE)
5 6 7 TEST (put parameters on stack and execute TEST)
CUBE (TRACE begins)
| 5 6 7 (stack contents upon entering CUBE)
CUBE
| 6 343 5 (stack contents upon entering CUBE)
CUBE
| 343 125 6 ok:3
.S (check final stack contents)
| 343 125 216 ok:3 (stack contents after final CUBE)

 5.4.3 Recursion

Normally, a Forth word cannot call itself before the definition has been compiled through to a ;
because the smudge bit is set, which prevents the word from being found during compilation. To
allow recursion, fbForth 2.0 includes the special word MYSELF .

MYSELF (---)

The MYSELF instruction places the cfa of the word currently being compiled into its own
definition thus allowing a word to call itself.

The following, more complex, TRACE example uses a recursive factorial routine for illustration:

5 System Synonyms and Miscellaneous Utilities 45

DECIMAL ok:0
TRACE ok:0 (compile following definition under TRACE option)
: FACT DUP 1 > IF DUP 1 - MYSELF * THEN ; ok:0
UNTRACE ok:0
TRON ok:0
5 FACT (put parameter on stack and execute FACT)
FACT (TRACE begins)
| 5
FACT
| 5 4
FACT
| 5 4 3
FACT
| 5 4 3 2
FACT
| 5 4 3 2 1 ok:1
.S (check final stack contents)
| 120 ok:1

Each time the traced FACT routine calls itself, a TRACE is executed.

 5.5 Random Numbers

Two different random number functions are available in fbForth. They are part of fbForth’s
resident dictionary.

RNDW (--- u)

The first random number function, RNDW , generates an unsigned random integer u. No
range is specified for RNDW . A 5-bit circular right shift of (6FE5h * seed + 7AB9h) is
stored at 83C0h as the new value for seed and returned as u on the stack such that
0 ≤ u ≤ FFFFh. Only the rightmost 16-bit value of the unsigned result of 6FE5h * seed is
used in the above calculation. Overflow is ignored for all operations.

RNDW ok:1

will place on the stack an unsigned integer from 0 to FFFFh.

RND (n1 --- n2)

The second, RND , generates a positive random integer between 0 and a specified range n1

by taking the absolute value of the result for RNDW above, dividing it by n1 and leaving the
remainder on the stack as n2, such that 0 ≤ n2 < n1.

DECIMAL 13 RND ok:1

will place on the stack an integer n2, such that 0 ≤ n2 < 13. Beware negative n1! If n1 is
negative, regardless of its value, n2 will be equivalent to executing

RNDW ABS ok:1 0 ≤ n ≤ 32767

RANDOMIZE (---)

To guarantee a different sequence of random numbers each time a program is run, the
RANDOMIZE instruction must be used. RANDOMIZE places an unknown seed into the

46 5.5 Random Numbers

random number generator. The seed is calculated by clearing the VDP status register by
reading it at 8802h and entering a counter loop that increments the counter and checks the
VDP status register for the next VDP interrupt, (essentially racing the console ISR for it)
at which point it exits the loop and stores the counter in the seed location 83C0h.

SEED (n ---)

To place a known seed into the random number generator, the SEED instruction is used.
You must specify the seed value.

4 SEED ok:0

will place the value 4 into the random number generator seed location 83C0h. This is
particularly useful during testing because RND and RNDW will generate the same series of
pseudo-random numbers every time they are started with the same seed.

 5.6 Miscellaneous Instructions

' (--- pfa)

' (tick) searches the CONTEXT vocabulary and then the CURRENT vocabulary in the
dictionary for the next word in the input stream. If it is found, ' pushes the word’s
parameter field address pfa onto the stack. Otherwise, an error message is displayed and,
if the result of loading a block, the contents of IN and BLK are left on the stack.

, (n ---)

, (comma) stores n at HERE on an even address boundary in the dictionary, which
includes the current value of HERE , and advances HERE one cell to the next even address.
Comma is the primary compiling word in Forth.

C, (b ---)

C, stores b at HERE . C, is the byte equivalent of , . Care must be taken when using C,
to compile bytes into the dictionary because most storage to the dictionary is cell-
oriented. If HERE is left on an odd address, a word like , will overwrite the previously
stored byte!

CLS (---)

CLS is part of fbForth’s resident dictionary. Use this word to clear the display screen.
CLS clears the display screen by filling the screen image table with blanks. The screen
image table runs from SCRN_START to SCRN_END . CLS may be used inside a colon
definition or directly from the keyboard. CLS will not clear bitmap displays or sprites.

PAGE (---)

PAGE clears the screen and places the cursor at the top left of the screen. It is a shortcut
for the following code:

CLS

0 0 GOTOXY

6 An Introduction to Graphics 47

6 An Introduction to Graphics

Words introduced in this chapter:

#MOTION DELALL JCRU SCREEN SPRPAT

BEEP DELSPR JKBD SPCHAR SPRPUT

CHAR DOT JMODE SPDCHAR SSDT

CHARPAT DRAW JOYST SPLIT TEXT

COINC DTOG LINE SPLIT2 TEXT80

COINCALL GCHAR MAGNIFY SPRCOL UNDRAW

COINCXY GRAPHICS MCHAR SPRDIST VCHAR

COLOR GRAPHICS2 MINIT SPRDISTXY VDPMDE

DATA[HCHAR MOTION SPRGET VMODE

DCHAR HONK MULTI SPRITE]DATA

Graphics words in fbForth 2.0 are now much faster than in TI Forth and fbForth 1.0 because
most of the graphics primitives have been rewritten in Assembly Language. LINE probably
enjoys the greatest speed increase. Its high-level Forth code in TI Forth and fbForth 1.0
rendered it nearly useless.

 6.1 Graphics Modes

The TI Home Computer possesses a broad range of graphics capabilities. Seven screen modes
are available to the user:

0) Text80 Mode—This is the same as text mode described below except that, in text80
mode, the screen is 80 columns by 24 lines. The user should insure that the system in use
is capable of displaying 80-columns before invoking it, i.e., it should be equipped with an
F18A VDP (available at codehackcreate.com) or similar device.

1) Text Mode—Standard ASCII characters are available, and new characters may be
defined. All characters have the same foreground and background color. The screen is
40 columns by 24 lines. Text mode is used by the Forth 40/80-column screen editor.

2) Graphics Mode—Standard ASCII characters are available, and new characters may be
defined. Each character set may have its own foreground and background color.

3) Multicolor Mode—The screen is 64 columns by 48 rows. Each standard character
position is now 4 smaller boxes which can each have a different color. ASCII characters
are not available and new characters cannot be defined.

4) Bitmap Mode (Graphics2)—This mode is available only on the TI-99/4A. Bitmap
mode allows you to set any pixel on the screen and to change its color within the limits
permitted by the TMS9918a. The screen is 256 columns by 192 rows.

5) Split Mode—This mode is one of two unique graphics modes created by using graphics2
mode in a non-standard way. Split2 [see (6)] is the other non-standard variation of

48 6.1 Graphics Modes

graphics2 mode. Split and split2 modes allow you to display text while creating bitmap
graphics. Split mode sets the top two thirds of the screen in graphics2 mode and places
text on the last third. Split mode is used by the 64-column editor.

6) Split2 Mode—This mode is the other of the two unique graphics modes created by using
graphics2 mode in a non-standard way [see (5)]. Split2 sets the top one sixth of the
screen as a text window and the rest in graphics2 mode.

Split and split2 modes provide an interactive bitmap graphics setting. That is, you can type
bitmap instructions and watch them execute without changing modes.

Sprites (moving graphics) are available in all modes except text and text80. The sprite
automotion feature is not available in graphics2, split, or split2 modes.

You may place the computer in the above modes by executing one of the following instructions:

TEXT80 (---)

TEXT (---)

GRAPHICS (---)

MULTI (---)

GRAPHICS2 (---)

SPLIT (---)

SPLIT2 (---)

VMODE (n ---) where n is one of the above VDP mode numbers (0 – 6).

The following resident user variable holds a number corresponding to one of the above modes as
enumerated above. It can be useful for programmatically determining the graphics mode:

VDPMDE (--- addr)

Executing one of the mode-setting words puts the corresponding number into VDPMDE as
can be seen in the following:

GRAPHICS VDPMDE @ .
2 ok:0

 6.2 fbForth 2.0 Graphics Words

Many fbForth words have been defined to make graphics handling much easier for the user. As
many words are mentioned, an annotation will appear underneath them denoting which of the
modes they may be used in (T G M B). These denote text, graphics, multicolor and bitmapped
(graphics2, split, split2) modes, respectively—‘T’ includes text80.

In several instruction examples, a base (HEX or DECIMAL) is specified. This does not mean that
you must be in a particular base in order to use the instruction. It merely illustrates that some
instructions are more easily written in hexadecimal than in decimal. It also avoids ambiguity.

6 An Introduction to Graphics 49

 6.3 Color Changes

The simplest graphics operations involve altering the color of the screen and of character sets.
There are 32 character sets (0 ‒ 31), each containing 8 characters. For example, character set 0
consists of characters 0 ‒ 7, character set 1 consists of characters 8 ‒ 15, etc. Sixteen colors are
available on the TI Home Computer.

Color
Hex

Value Color
Hex

Value

transparent 0 medium red 8

black 1 light red 9

medium green 2 dark yellow A

light green 3 light yellow B

dark blue 4 dark green C

light blue 5 magenta D

dark red 6 gray E

cyan 7 white F

SCREEN (color ---)

The Forth word SCREEN following one of the above table values will change the screen
color to that value. The following example changes the screen to light yellow:

base color instr
HEX B SCREEN or
DECIMAL 11 SCREEN
 (T G M B)

For text modes, the color of the foreground also needs to be set and should be different
from the background color so that text is visible. The foreground color must be in the
leftmost 4 bits of the byte passed to SCREEN . It is easier to compose the byte in
hexadecimal than decimal because each half of the byte is one hexadecimal digit. To set
the foreground to black (1) and the background to light yellow (Bh), the following
sequence will do the trick:

HEX 1B SCREEN ok:0

COLOR (fg bg charset ---)

The foreground and background colors of a character set may also be easily changed:

base fg bg charset instr
HEX 4 D 1A COLOR or

DECIMAL 4 13 26 COLOR
 (G)

The above instruction will change character set 26 (characters 208 ‒ 215) to have a
foreground color of dark blue and a background color of magenta.

50 6.4 Placing Characters on the Screen

 6.4 Placing Characters on the Screen

HCHAR (col row count char ---)

To print a character anywhere on the screen and optionally repeat it horizontally, the
HCHAR instruction is used. You must specify a starting column and row position as well
as the number of repetitions and the ASCII code of the character you wish to print.

Keep in mind that both columns and rows are numbered from zero!!!

For example,

base col row count char instr
HEX A 11 5B 2A HCHAR or
DECIMAL 10 17 91 42 HCHAR
 (T G)

will print a stream of 91 *s, starting at column 10, row 17, that will wrap from right to
left on the screen.

HCHAR does not check to see whether (col,row) is within the screen buffer or whether
count will overrun VRAM after the screen buffer. This is the same behavior as in TI
Forth. This behavior will be changed in the next build of fbForth 2.0 to conform to how
TI Basic and TI Extended Basic implement this function, i.e., in the next build, HCHAR
will throw an error if it would start outside the screen buffer and it will wrap to the start
of the screen buffer upon reaching the end of the screen buffer.

VCHAR (col row count char ---)

To print a vertical stream of characters, the word VCHAR is used in the same format as
HCHAR . These characters will wrap from the bottom of the screen to the top of the same
column.

VCHAR does not check to see whether (col,row) is within the screen buffer. Upon
reaching the end of the screen buffer, it wraps to the top of the same column. This is
different from TI Forth, which wraps to the next column and then to (0,0), filling the
screen buffer if count is high enough. This behavior will be changed in the next build of
fbForth 2.0 to conform to how TI Basic and TI Extended Basic implement this function,
i.e., in the next build, VCHAR will throw an error if it would start outside the screen buffer
and it will wrap to (0,0) upon reaching the end of the screen buffer, as it does now.

GCHAR (col row --- char)

The fbForth word GCHAR will return on the stack the ASCII code of the character
currently at the specified position on the screen. If the above HCHAR instruction were
executed and followed by

base col row instr
HEX F 11 GCHAR or
DECIMAL 15 17 GCHAR
 (T G)

2Ah or 42 would be left on the stack.

6 An Introduction to Graphics 51

 6.5 Defining New Characters

Each character in graphics mode is 8 x 8 pixels in size. Each row makes up one byte of the
8-byte character definition. Each set bit (1) takes on the foreground color while the others remain
the background color.

In text mode, characters are defined in the same way, but only the left 6 bits of each row are
displayed on the screen.

For example, these 8 bytes:

3C66h DBE7h E7DBh 663Ch

Rows 0 ‒ 1 2 ‒ 3 4 ‒ 5 6 ‒ 7

define this character:

←Displayed in Text mode

←Displayed in Graphics mode

0 1 2 3 4 5 6 7

0

1

2
Each Black square
represents a set bit.3

4

5

6

7

CHAR (n1 n2 n3 n4 char ---)

The fbForth word CHAR is used to create new characters. To assign the above pattern to
character number 123, you would type

base n1 n2 n3 n4 char instr
HEX 3C66 DBE7 E7DB 663C 7B CHAR or
DECIMAL 15426 56295 59355 26172 123 CHAR
 (T G)

As you can see, it is more natural to use this instruction in HEX than in DECIMAL .

DCHAR (addr cnt char ---)

DCHAR can be used to create several contiguous characters at once. For example, to
create five such characters starting with character number 123, you would first set up an
array of 20 16-bit numbers for the required 40 bytes (8 bytes or 4 cells for each

52 6.5 Defining New Characters

character’s pattern), place the array’s start address addr and cell count cnt on the stack
followed by the character code char (123 in this case). You would then type

base addr cnt char instr
HEX AC34 14 7B DCHAR or

DECIMAL 44084 20 123 DCHAR
 (T G)

An easy way to set up the array for the above is to use the DATA[…]DATA construct,
which will leave the address and cell count of the array on the stack. Add char to the
stack and launch DCHAR . The following example defines characters 123 – 127 to each
have the same pattern as the CHAR example above:

HEX DATA[3C66 DBE7 E7DB 663C
3C66 DBE7 E7DB 663C
3C66 DBE7 E7DB 663C
3C66 DBE7 E7DB 663C
3C66 DBE7 E7DB 663C]DATA ok:2

7B DCHAR ok:0

See Appendix D “The fbForth 2.0 Glossary” for the details of DATA[and]DATA.

CHARPAT (char --- n1 n2 n3 n4)

To define another character to look like character 65 (‘A’), for example, you must first
find out what the pattern code for ‘A’ is. To accomplish this, use the CHARPAT
instruction. This instruction leaves the character definition on the stack in the proper
order for a CHAR instruction. Study this line of code:

HEX 41 CHARPAT 7E CHAR or

DECIMAL 65 CHARPAT 126 CHAR
 (T G)

The above instructions place on the stack the character pattern for ‘A’ and assigns the
pattern to character 126. Now both character 65 and 126 have the same shape.

 6.6 Sprites

Sprites are moving graphics that can be displayed on the screen independently and/or on top of
other characters. Thirty-two sprites are available.

 6.6.1 Magnification

Sprites may be defined in 4 different sizes or magnifications:

Magnification
Factor

Description

0 Causes all sprites to be single size and unmagnified. Each
sprite is defined only by the character specified and occupies
one character position on the screen.

6 An Introduction to Graphics 53

Magnification
Factor

Description

1 Causes all sprites to be single size and magnified. Each sprite
is defined only by the character specified, but this character
expands to fill 4 screen positions.

2 Causes all sprites to be double size and unmagnified. Each
sprite is defined by the character specified along with the next
3 characters. The first character number must be divisible by
4. This character becomes the upper left quarter of the sprite,
the next characters are the lower left, upper right, lower right
respectively. The sprite fills 4 screen positions.

3 Causes all sprites to be double size and magnified. Each sprite
is defined by 4 characters as above, but each character is
expanded to occupy 4 screen positions. The sprite fills 16
positions.

The default magnification is 0.

MAGNIFY (n ---)

To alter sprite magnification, use the fbForth word MAGNIFY .

n instr
2 MAGNIFY
 (G M B)

will change all sprites to double size and unmagnified.

 6.6.2 Sprite Initialization

DELALL (---)
DELALL
(G M B)

should be used to initialize all sprites. It removes all sprites from the screen and from
memory. It also zeroes the Sprite Motion Table, except in bitmap modes. DELALL takes
no parameters. Only the Sprite Descriptor Table will remain intact after this instruction is
executed. The VDP mode must be set before using this word.

If you wish to change the Sprite Descriptor Table to a location different from the default
for a given VDP mode, use SSDT , which follows.

SSDT (vaddr ---) ***This word is optional in fbForth 2.0***

SSDT changes the location of the Sprite Descriptor Table from its default location, set by
the VDP mode changing words. As of fbForth 2.0, SSDT is no longer required to
initialize sprites. SSDT does call DELALL before moving the location of the Sprite
Descriptor Table, so sprites do not need to be initialized with DELALL after executing
SSDT . If you do use this word, the computer must be set into the VDP mode you wish to
use with sprites before executing it. Recall that sprites are not available in text mode.

54 6.6 Sprites

With this word, you have a choice of overlapping your sprite character definitions with
the standard characters in the Pattern Descriptor Table (see VDP Memory Map in Chapter
4) or moving the Sprite Descriptor Table elsewhere in memory. This move is highly
recommended (except in bitmap modes) to avoid confusion. 2000h is usually a good
location, but any available 2 KiB (800h) boundary will do.

base vaddr instr
HEX 2000 SSDT or
DECIMAL 8192 SSDT
 (G M B)

will move the Sprite Descriptor Table to 2000h.

 6.6.3 Using Sprites in Bitmap Mode

SATR (--- vaddr)

When using sprites in any of the bitmap modes (graphics2, split, split2) and after entering
the desired VDP mode, the location of the Sprite Attribute List will have already been
changed to 1B00h. This can be verified in split or split2 mode as follows:

HEX SATR U. 1B00 ok:0

The base address of the Sprite Descriptor Table will also have been changed to the required
3800h, which can be verified in split or split2 mode with

HEX SPDTAB U. 3800 ok:0

Only 59 character numbers will be available for sprite patterns in the bitmap modes because
otherwise you will interfere with the disk buffering region at the top of VRAM. SPCHAR may
only be used to define patterns 0 ‒ 58. (See the following section for information on SPCHAR.) If
you really need more than 59 sprite patterns available and you don't need to open any files other
than blocks files like FBLOCKS, you can change from 2 simultaneous files to 1 with 1 FILES
after changing the VDP mode because fbForth 2.0 only opens one blocks file at a time, and then,
only to read or write a single block. This will allow 65 more patterns (0 – 123).

Note: If you have mass storage in addition to diskettes (hard disk, nanoPEB, CF7+, etc.), it is
possible that more than you expect of upper VRAM is used for buffering. In this case, check
location 8370h for the highest VRAM address available, subtract 3800h from it, divide by 8 and
truncate the quotient to get the number of sprite patterns available.

3800h Sprite Patterns 0-58

39DDh 01DEh

39DEh Start of Disk Buffer Region for 2 files

 6.6.4 Creating Sprites

The first task involved in creating sprites is to define the characters you will use to make them.
These definitions will be stored in the Sprite Descriptor Table mentioned in the above section.

6 An Introduction to Graphics 55

SPCHAR (n1 n2 n3 n4 char ---)

A word identical in format to CHAR is used to store sprite character patterns. If you are
using a magnification factor of 2 or 3, do not forget that you must define 4 consecutive
characters for each sprite. In this case, the character # of the first character must be a
multiple of 4.

base n1 n2 n3 n4 char instr
HEX 0F0F 2424 F0F0 4242 0 SPCHAR or
DECIMAL 3855 9252 61680 8770 0 SPCHAR
 (G M B)

defines character 0 in the Sprite Descriptor Table. If your Pattern and Sprite Descriptor
Tables overlap, use character numbers below 127 with caution.

SPDCHAR (addr cnt char ---)

SPDCHAR can be used to create several contiguous sprite characters at once. SPDCHAR is
identical to DCHAR , (see § 6.5 “Defining New Characters” above) but for sprite pattern
definitions because SPDTAB does not always start at the same VRAM address as PDT.
Here is the same example as for DCHAR in § 6.5 to create five identical sprite characters
numbering 123 – 127, with pattern array of cnt cells starting at addr:

base addr cnt char instr
HEX AC34 14 7B SPDCHAR or
DECIMAL 44084 20 123 SPDCHAR
 (G M B)

As with DCHAR , you can facilitate setting up the pattern array with DATA[…]DATA . See
the DCHAR example in § 6.5 above.

SPRITE (dotcol dotrow color char spr ---)

To define a sprite, you must specify the dot column and dot row at which its upper left
corner will be located, its color, a character number and a sprite number (0 – 31).

base dotcol dotrow color char spr instr
HEX 6B 4C 5 10 1 SPRITE or

DECIMAL 107 76 5 16 1 SPRITE
 (G M B)

defines sprite #1 to be located at column 107 and row 76, to be light blue and to begin
with character 16. Its size will depend on the magnification factor.

Once a sprite has been created, changing its pattern, color or location is trivial.

SPRPAT (char spr ---)

base char spr instr
HEX 14 1 SPRPAT or
DECIMAL 20 1 SPRPAT
 (G M B)

will change the pattern of sprite #1 to character number 20.

56 6.6 Sprites

SPRCOL (color spr ---)

base color spr instr
HEX C 2 SPRCOL or
DECIMAL 12 2 SPRCOL
 (G M B)

will change the color of sprite #2 to dark green.

SPRPUT (dotcol dotrow spr ---)

base dotcol dotrow spr instr
HEX 28 4F 1 SPRPUT or
DECIMAL 40 79 1 SPRPUT
 (G M B)

will place sprite #1 at column 40 and row 79.

 6.6.5 Sprite Automotion

In graphics or multicolor mode, sprites may be set in automotion. That is, having assigned them
horizontal and vertical velocities and set them in motion, they will continue moving with no
further instruction. Sprite automotion is only available in graphics and multicolor modes.

Velocities from 0 to 7Fh are positive velocities (down for vertical and right for horizontal) and
from FFh to 80h are taken as two’s complement negative velocities.

MOTION (xvel yvel spr ---)

base xvel yvel spr instr
HEX FC 6 1 MOTION or
DECIMAL -4 6 1 MOTION
 (G M)

will assign sprite #1 a horizontal velocity of -4 and a vertical velocity of 6, but will not
actually set them into motion.

#MOTION (n ---)

After you assign each sprite you want to use a velocity, you must execute the word
#MOTION to set the sprites in motion. #MOTION expects to find on the stack the highest
sprite number you are using + 1.

n instr
6 #MOTION
 (G M)

will set sprites #0 – #5 in motion.

n instr
0 #MOTION

6 An Introduction to Graphics 57

will stop all sprite automotion, but motion will resume when another #MOTION
instruction is executed.

SPRGET (spr --- dotcol dotrow)

Once a sprite is in motion, you may wish to find out its horizontal and vertical position on
the screen at a given time.

spr instr
2 SPRGET
 (G M B)

will return on the stack the horizontal (dotcol) and vertical (dotrow) positions of sprite
#2. The sprite does not have to be in automotion to use this instruction.

 6.6.6 Distance and Coincidences between Sprites

It is possible to determine the distance d between two sprites or between a sprite and a point on
the screen. This capability comes in handy when writing game programs. The actual value
returned by each of the fbForth words, SPRDIST and SPRDISTXY , is d 2. Distance d is the
hypotenuse of the right triangle formed by joining the line segments, d, x2 – x1 (the horizontal
x-distance difference in dot columns) and y2 – y1 (the vertical y-distance difference in dot rows).
The squared distance between the two sprites or the sprite and screen point is calculated by
squaring the x-distance difference and adding that to the square of the the y-distance difference,
i.e., d 2 = (x2 – x1)

 2 + (y2 – y1)
 2.

SPRDIST (spr1 spr2 --- n)

spr1 spr2 instr
2 4 SPRDIST
 (G M B)

returns on the stack the square of the distance between sprite #2 and sprite #4.

SPRDISTXY (dotcol dotrow spr --- n)

base dotcol dotrow spr instr
DECIMAL 65 21 5 SPRDISTXY
 (G M B)

returns the square of the distance between sprite #5 and the point (65,21).

A coincidence occurs when two sprites become positioned directly on top of one another. That is,
their upper left corners reside at the same point. Because this condition rarely occurs when
sprites are in automotion you can set a tolerance limit for coincidence detection. For example, a
tolerance of 3 would report a coincidence whenever the upper left corners of the two sprites came
within 3 dot positions of each other.

COINC (spr1 spr2 tol --- flag)

To find a coincidence between two sprites, the fbForth word COINC is used.

58 6.6 Sprites

spr1 spr2 tol instr
7 9 2 COINC
 (G M B)

will detect a coincidence between sprites #7 and #9 if their upper left corners passed
within 2 dot positions of each other. If a coincidence is found, a true flag is left on the
stack. If not, a false flag is left.

COINCXY (dotcol dotrow spr tol --- flag)

Detecting a coincidence between a sprite and a point is similar.

base dotcol dotrow spr tol instr
DECIMAL 63 29 8 3 COINCXY
 (G M B)

will detect a coincidence between sprite #8 and the point (63,29) with a tolerance of 3. A
true or false flag will again be left on the stack.

Both of the above instructions will detect a coincidence between non-visible parts of the sprites.
That is, you may not be able to see the coincidence.

COINCALL (--- flag)

Another instruction is used to detect only visible coincidences. It, however, will not
detect coincidences between a select two sprites, but will return a true flag when any two
sprites collide. This instruction is COINCALL , and takes no arguments.

 6.6.7 Deleting Sprites

As you might have noticed, sprites do not go away when you clear the rest of the screen with
CLS . Special instructions must be used to remove sprites from the display,

DELSPR (spr ---)

spr instr
2 DELSPR
 (G M B)

will remove sprite #2 from the screen by altering its description in the Sprite Attribute
List (see VDP Memory Map in Chapter 4). It sets sprite #2 to sprite pattern #0 and sets
the sprite off screen at x = 1, y = 192. It zeroes the velocity of sprite #2 in the Sprite
Motion Table, but does not alter the number of sprites the computer thinks are defined by
virtue of not setting y = D0h, the y-value that undefines all sprites with numbers greater
than or equal to the lowest-numbered sprite with that value.

DELALL (---)
DELALL
(G M B)

on the other hand, will remove all sprites from the screen and from memory. See § 6.6.2
Sprite Initialization above for more details.

6 An Introduction to Graphics 59

 6.7 Multicolor Graphics

Multicolor mode allows you to display kaleidoscopic graphics. Each character position on the
screen consists of 4 smaller squares which can each be a different color. A cluster of these
characters produces a kaleidoscope when the colors are changed rapidly.

MINIT (---)

After entering multicolor mode, it is necessary to initialize the screen. The MINIT
instruction will accomplish this. It takes no parameters.

When in multicolor mode, the columns are numbered 0 ‒ 63 and rows are numbered
0 ‒ 47. A multicolor character is ¼ the size of a standard character. Therefore, more of
them fit across and down the screen.

MCHAR (color col row ---)

To define a multicolor character, you must specify a color and a position (column, row)
and then execute the word MCHAR :

base color col row instr
HEX B 1A 2C MCHAR or

DECIMAL 11 26 44 MCHAR

The above instruction will place a light yellow square at (26,44).

To change a character’s color, simply define a different color with MCHAR with the same
position. In other words, cover the existing character.

 6.8 Using Joysticks

JOYST (n1 --- [char n2 n3] | n2)

The JOYST instruction allows you to use joysticks in your fbForth program. JOYST
accepts input from joystick #1 and the left side of the keyboard (n1 = 1) or from joystick
#2 and the right side of the keyboard (n1 = 2). Return values depend on the value in
JMODE (see below). If JMODE = 0 (default), JOYST executes JKBD (see below for more
detail), which returns the character code char of the key pressed, the x status n2 and the y
status n3. If JMODE ≠ 0, JOYST executes JCRU , which checks only the joysticks and
returns a single value with 0 or more of the 5 least significant bits set. See JCRU below
for their meaning.

JMODE (--- addr)

JMODE is a user variable that uses offset 26h of the user variable table. It is used by
JOYST to determine whether to execute JKBD (= 0) or JCRU (≠ 0). The default value is 0.
See JOYST , JKBD and JCRU in this section.

60 6.8 Using Joysticks

JKBD (n1 --- char n2 n3)

Executed by JOYST when JMODE = 0, JKBD allows input from joystick #1 and the left
side of the keyboard (n1 = 1) or from joystick #2 and the right side of the keyboard
(n1 = 2). Values returned are the character code char of the key pressed, the x status n2

and the y status n3. A “Key Pad” exists on each side of the keyboard and may be used in
place of joysticks. Map directions (N, S, E, W, NE, etc.) are used on the diagrams below
to indicate the corresponding display-screen directions (up, down, right, left, diagonally-
up-and-right, etc.) The following diagrams show which keys have which function.

When Joystick #1 is specified, these
keys on the left side of the keyboard are
valid

The function of each key is indicated
below the key and is followed by the
character code returned as char on the
stack.

Fire-18 NW-4 N-5 NE-6

 W-2 E-3

 SW-15 S-0 SE-14

When Joystick #2 is specified, these
keys on the right side of the keyboard
are valid

The function of each key is indicated
below the key and is followed by the
character code returned as char on the
stack.

Fire-18 NW-4 N-5 NE-6

 W-2 E-3

 SW-15 S-0 SE-14

The JKBD instruction (or JOYST with JMODE = 0) returns 3 numbers on the stack: a
character code char on the bottom of the stack, an x-joystick status n2 and a y-joystick
status n3 on top of the stack. The joystick positions are illustrated in the diagram on
page 62.

FCh equals decimal 252. The capital letters and ‘,’ separated by ‘ |’ indicate which keys on
the left and right side of the keyboard return these values. Note: The character value of
all fire buttons is 18 (12h).

If no key is pressed, the returned values will be a character code of 255 (FFh), and the
current x- and y-joystick positions. If a valid key is pressed, the character code of that

6 An Introduction to Graphics 61

key will be returned along with its translated directional meaning (see diagram). If an
illegal key is pressed, three zeroes will be returned.

If the fire button is pressed while using the keyboard, a character code of 18 (12h) along
with two zeroes will be returned. If the fire button is pressed while using a joystick, a
character code of 18 (12h) along with the current x- and y-joystick positions will be
returned.

If you are using JKBD (or JOYST with JMODE = 0) in a loop, do not forget to DROP or
otherwise use the three numbers left on the stack before calling JKBD or JOYST again. A
stack overflow will likely result if you do not.

You will notice that the x and y values left by JKBD (or JOYST with JMODE = 0) for
joystick status use FCh for left and down as described on page 250 of the
Editor/Assembler Manual. If you are used to the value -4, which is the value returned for
the same directions in TI Basic and TI Extended Basic, you can change JKBD ’s return of
FCh to -4 in block 39, where it is defined. You will need to change every instance of
‘0FC’ to ‘-4’ in the definition of JKBD—there are six of them.

The reason, of course, that FCh is used in fbForth (and TI Forth before it) is that FCh is
how -4 is represented in a single byte in the byte-oriented GROM joystick table where it
is stored.

JCRU (n1 --- n2)

Executed by JOYST when JMODE ≠ 0, JCRU allows input from joystick #1 (n1 = 1) or #2
(n1 = 2). The value n2 returned will have 0 or more of the 5 least significant bits set for
direction and fire-button status. Bit values are 1 = Fire, 2 = W, 4 = E, 8 = S and 16 = N.
Two-bit directional combinations are 18 = NW (N + W or 16 + 2), 20 = NE, 10 = SW and
12 = SE.

If you are using JCRU (or JOYST with JMODE ≠ 0) in a loop, do not forget to DROP or
otherwise use the number left on the stack before calling JCRU or JOYST again. A stack
overflow will likely result if you do not.

62 6.8 Using Joysticks

 6.9 Dot Graphics

High resolution (dot) graphics are available in graphics2, split and split2 modes. In graphics2
mode, it is possible to independently define each of the 49152 pixels on the screen. Split and
split2 modes allow you to define the upper two thirds or the lower five sixths of the pixels.

Three dot drawing modes are available:

DRAW (---)

stores 0 in DMODE , which causes DOT to plot dots in the ‘on’ state.

Joystick positions and values left by JKBD (or JOYST with JMODE = 0)

6 An Introduction to Graphics 63

UNDRAW (---)

stores 1 in DMODE , which causes DOT to plot dots in the ‘off’ state.

DTOG (---)

stores 2 in DMODE , which causes DOT to toggle dots between the ‘on’ and ‘off’ state. If
the dot is ‘on’, DOT will turn it ‘off’ and vice versa.

DMODE (--- addr)

The value of a variable called DMODE controls which drawing mode DOT is in. If DMODE
contains 0, DOT is in DRAW mode. If DMODE contains 1, DOT is in UNDRAW mode, and if
DMODE contains 2, DOT is in DTOG mode.

DOT (dotcol dotrow---)

To actually plot a dot on the screen, the DOT instruction is used. You must specify the dot
column and dot row of the pixel you wish to plot:

base dotcol dotrow instr
DECIMAL 34 12 DOT

will plot or unplot a dot at position (34,12), depending on the value of DMODE .

DCOLOR (--- addr)

DCOLOR is short for “dot color” and should contain either one byte of foreground-
background (FG-BG) color information or -1. The default is -1, which means that DOT
will use the FG and BG colors of the byte in the Bitmap Color Table where the dot will
be plotted/unplotted. These colors are black on transparent when the bitmap graphics
modes are initialized. The screen color default is gray. To alter the FG and BG colors of
the dots you plot, you must modify the value of the variable DCOLOR . The value of
DCOLOR should be two hexadecimal digits, where the first digit specifies the FG color and
the second specifies a BG color. Why do you need a BG color for a dot? There is a
simple explanation: Each dot represents one bit of a byte in memory. Any ‘on’ bit in
that byte displays the FG color while the others take on the BG color. Usually, you would
specify the background color to be transparent so that all ‘off’ dots will have the screen’s
color.

LINE (dotcol1 dotrow1 dotcol2 dotrow2 ---)

The fbForth instruction LINE allows you to easily plot a line between any two points on
the bitmap portion of the screen. You must specify a dot column and a dot row for each
of the two points.

base dotcol1 dotrow1 dotcol2 dotrow2 instr
DECIMAL 23 12 56 78 LINE

The above instruction will plot a line from left to right between (23,12) and (56,78). The
line instruction calls DOT to plot each point. Therefore, you must set DMODE and DCOLOR
before using LINE if you do not want different plotting mode and FG-BG dot colors.

64 6.10 Special Sounds

 6.10 Special Sounds

Two special sounds can be used to enhance your graphics application. To use these noises in your
program, simply type the name of the sound you want to hear. No parameters are needed.

BEEP (---)

The first is called BEEP and produces a pleasant high pitched sound.

HONK (---)

The other, called HONK , produces a less pleasant low tone.

 6.11 Constants and Variables Used in Graphics
Programming

The following constants and variables are defined in the graphics routines. In fbForth 2.0, the
values of COLTAB , PDT , SATR and SPDTAB are now changed by the mode changing words and
do not require intervention by the user.

name type description default
bitmap modes

4 5 6

DMODE variable Dot graphics drawing mode 0 0|1|2

SMTN constant VDP address of Sprite
Motion Table

780h N/A N/A N/A

COLTAB constant VDP address of Color Table 380h 0 0 0

PDT constant VDP address of Pattern
Descriptor Table

800h 2000h 3000h 2000h

SATR constant VDP address of Sprite
Attribute Table

300h 1B00h 1B00h 1B00h

SPDTAB constant VDP address of Sprite
Descriptor Table

800h 3800h 3800h 3800h

7 The Floating Point Support Package 65

7 The Floating Point Support Package
Words introduced in this chapter:

>DEG F! F> FOVER LOG10

>F F* F>R FP1 PI

>RAD F+ F@ FP10 R>F

?FLERR F- FABS FRAC RAD/DEG

ATN F->S FCONSTANT FROT S->F

CEIL F. FDROP FSWAP SIN

COS F/ FDUP FVARIABLE SQR

DEG/RAD FO< FFMT. INT TAN

EXP FO= FLERR LN10INV TRUNC

EXP10 F< FLOOR LOG ^

EULER_E F= FMINUS

The floating point package is designed to make it easy to use the Radix 100 floating point
package available in ROM in the fbForth 2.0 cartridge. Normal use of these routines does not
require the user to understand the implementation. You should consult Appendix L “Notes on
Radix-100 Notation” to get a better understanding of how floating point numbers are managed on
the TI-994A computer by the routines discussed in this chapter.

All floating point operations that have results that exceed the maximum or minimum
representable floating point numbers convert the result to the maximum representable floating
point number (± 9.9999999999999 ∙ 10127) for numbers that are too large and to 0 for numbers
that are too small.

 7.1 Floating Point Stack Manipulation

The floating point numbers in the TI-99/4A occupy 4 16-bit cells (8 bytes) each. In order to
simplify stack manipulations with these numbers, the following stack manipulation words are
presented. They have the same functions as their 16-bit, 1-cell counterparts that appear in this
manual without the ‘F’ in their names:

FDUP (f --- f f)

FDROP (f ---)

FOVER (f1 f2 --- f1 f2 f1)

FSWAP (f1 f2 --- f2 f1)

FROT (f1 f2 f3 --- f2 f3 f1)

F>R (f ---) (R: --- f)

R>F (--- f) (R: f ---)

66 7.2 Floating Point Defining Words

 7.2 Floating Point Defining Words

The following words create new floating point variables and constants. They both require an 8-
byte floating-point number on the stack to place in the parameter field of the newly defined
variable or constant:

FVARIABLE xxx (f ---) (IS: varName) Create variable with initial value f

xxx (--- addr) Returns pfa of xxx when executed

FCONSTANT xxx (f ---) (IS: constName) Create constant with value f

xxx (--- f) Returns f (contents of xxx’s pfa) when
executed

 7.3 Floating Point Fetch and Store

Floating point numbers can be stored and fetched by using

F! (f addr ---)

F@ (addr --- f)

The user must ensure that adequate storage is allocated for these numbers (e.g., define a floating
point variable: >F 0 FVARIABLE nnnn could be used. FVARIABLE allots 8 bytes in the variable
nnnn ’s parameter field.)

 7.4 Floating Point Conversion Words

The following words convert numbers on the stack to and from floating point numbers:

S->F (n --- f)

A 16-bit number can be converted to floating point by using S->F . It functions by
replacing the 16-bit number on the stack by a floating point number of equal value.

F->S (f --- n)

This is the inverse of S->F . It starts with a floating point number on the stack and leaves
a 16-bit integer.

 7.5 Floating Point Number Manipulation

FABS (f --- | f |)

converts f to its absolute value.

FMINUS (f --- – f)

negates f by negating the most significant word (topmost cell on the stack).

FLOOR (f1 --- f2)

finds the closest integer f2 less than or equal to f1.

7 The Floating Point Support Package 67

CEIL (f1 --- f2)

finds the closest integer f2 greater than or equal to f1.

TRUNC (f1 --- f2)

truncates f1 , leaving the integer portion f2 of f1 on the stack.

FRAC (f1 --- f2)

truncates f1 , leaving the fractional portion f2 of f1 on the stack.

This word has a bug that causes a system crash. It will be fixed in the next revision of
fbForth 2.0. In the meantime, you can redefine FRAC as follows:

: FRAC FDUP TRUNC F- ; FRAC isn't unique. ok:0

You will get the indicated response because the word is already defined.

 7.6 Floating Point Number Entry

In addition, the word

>F (--- f)

can be used from the console or in a colon definition to convert a string of characters to a
floating point number. Note that >F is independent of the current value of BASE .

The string is always terminated by a blank or carriage return. The following are
examples:

>F 123 or 123 S->F

>F 123.46

>F -123.46

>F 1.23E-006

>F 9.88E+091

>F 0 or 0 S->F

 7.7 Built-in Floating Point Constants

DEG/RAD (--- f)

pushes the constant 57.295779513082 (degrees/radian) to the stack.

EULER_E (--- f)

pushes the constant e = 2.718281828459 to the stack.

FP1 (--- f)

pushes the constant 1 to the stack as a floating point number. It is equivalent to >F 1 .

FP10 (--- f)

pushes the constant 10 to the stack as a floating point number. It is equivalent to >F 10 .

68 7.7 Built-in Floating Point Constants

LN10INV (--- f)

pushes the constant 1/ln(10) = 1/2.302… = 0.43429448190325 to the stack.

PI (--- f)

pushes the constant π = 3.141592653590 to the stack.

RAD/DEG (--- f)

pushes the constant 0.01745329251994 (radians/degree) to the stack.

 7.8 Floating Point Arithmetic

Floating point arithmetic can now be performed on the stack just as it is with integers. The four
arithmetic operators are:

F+ (f1 f2 --- f3)

puts on the stack the result (f3) of f1 + f2.

F- (f1 f2 --- f3)

puts on the stack the result (f3) of f1 – f2.

F* (f1 f2 --- f3)

puts on the stack the result (f3) of f1 x f2.

F/ (f1 f2 --- f3)

puts on the stack the result (f3) of f1 / f2.

 7.9 Floating Point Comparison Words

Comparisons between floating point numbers and testing against zero are provided by the
following words. They are used just like their 16-bit counterparts except that the numbers tested
are floating point.

F0< (f --- flag) flag is true if f on stack is negative
F0= (f --- flag) flag is true if f on stack is zero
F> (f1 f2 --- flag) flag is true if f1 > f2

F= (f1 f2 --- flag) flag is true if f1 = f2

F< (f1 f2 --- flag) flag is true if f1 < f2

 7.10 Formatting and Printing Floating Point Numbers

F. (f ---)

The word F. is used to print the floating point number on top of the stack to the terminal
in TI Basic free format. F. is the simplest printing word for floating point numbers. It is
exactly the same as 0 FFMT. (see next definition) and is the only floating point print
word retained from TI Forth and fbForth 1.0 because of its likely common use and to
maintain some backward compatibility:

7 The Floating Point Support Package 69

1) Integers representable exactly are printed without a trailing decimal,

2) Fixed point format is used for numbers in range and

3) Exponential format (scientific notation) is used for very large or very small
numbers.18

The following screen shows examples of all the above situations:

The words F.R , FF. and FF.R are no longer defined in fbForth 2.0, but can be defined in terms
of FFMT. below.

FFMT. (f [intLen fracLen] optMask ---)

FFMT. handles all of the formatting and printing of floating point numbers. The integer
length intLen and the fraction length fracLen are required if and only if the options mask
optMask ≠ 0. To avoid confusion, you should always use F. (optMask = 0) for free
format output and limit use of FFMT. to fixed-format output (optMask ≠ 0). Then you
may think of this word as requiring all four stack entries in the above stack signature.

The output field width consists of intLen + fracLen (the significand field width) plus the
exponent field width (always 4 characters for E-notation or 5 characters for extended E-
notation). The significand field width cannot exceed 16 characters or an error message
that the field is too big will be printed. If the number cannot be formatted for the
requested output field width and intLen + fracLen ≤ 16, the field will be filled with
asterisks.

The following table details the various formats, free and fixed, that are possible and the
input stack entry parameters required for FFMT. :

18 The exponential format of the output string provided by TI in its GPL routine allows for just two digits for the
power of ten. It is puzzling that TI did this because the exponent can be as high as 127 and as low as -128. This
means that perfectly legitimate three-digit exponents appear as “**” in the output! This was one of the reasons for
the Author’s adaptation of the Geneve MDOS L10 Floating Point Math Library (with permission from Beery Miller
of 9640 News) to run on the TI-99/4A in cartridge ROM space.

70 7.10 Formatting and Printing Floating Point Numbers

Parameter Description

f : Floating point number to be formatted

intLen : Number of places before decimal point, including sign

fracLen : Number of places after decimal point, including decimal point

optMask : Output options mask—

bit 0: 0 = Free form TI Basic style. No other bits should be
set. There should be no other numbers on the stack
except f and optMask = 0.

1 = Fixed format, requiring four parameters on the
stack, f, intLen, fracLen and optMask

bit 1: 2 = Explicit sign

bit 2: 4 = Show ‘+’ for positive number instead of space. Bit
1 must also be set.

bit 3: 8 = E-notation. There will be 4 additional places in the
output not accounted for by intLen and fracLen.

bit 4: 16 = Extended E-notation. Bit 3 must also be set. There
will be 5 additional places in the output not
accounted for by intLen and fracLen.

Several examples of the output possible with FFMT. are shown in the following screen:

 7.11 Transcendental Functions

The following transcendental functions are also available:

>DEG (f1 --- f2) is the conversion of f1 radians to f2 degrees

>RAD (f1 --- f2) is the conversion of f1 degrees to f2 radians

7 The Floating Point Support Package 71

INT (f1 --- f2) Returns greatest integer not greater than input

^ (f1 f2 --- f3) f3 is f1 raised to the f2 power

SQR (f1 --- f2) f2 is the square root of f1

EXP (f1 --- f2) f2 is e (2.71828...) raised to the f1 power

EXP10 (f1 --- f2) f2 is 10 raised to the f1 power

LOG (f1 --- f2) f2 is the natural log of f1

LOG10 (f1 --- f2) f2 is the common log (log10) of f1

COS (f1 --- f2) f2 is the cosine of f1 (in radians)

SIN (f1 --- f2) f2 is the sin of f1 (in radians)

TAN (f1 --- f2) f2 is the tangent of f1 (in radians)

ATN (f1 --- f2) f2 is the arctangent (in radians) of f1

 7.12 Interface to the Floating Point Routines

The floating point routines use two memory locations in the console CPU RAM as floating point
registers. They are called FAC (for floating point accumulator) and ARG (for argument register).
Though fbForth 2.0 uses them for floating point calculations, the following words are no longer
defined in fbForth 2.0:

>ARG FAC FAC>ARG FMUL SETFL

>FAC FAC->S FADD FSUB VAL

ARG FAC> FDIV S->FAC

 7.13 Handling Floating Point Errors

FLERR (--- n)

FLERR is used to fetch the contents of the floating point error register (8354h) to the
stack. It can be used to get more specific information about the error than you get with
? FLERR below. See the next section for error codes. The Editor/Assembler Manual may
also be helpful because, even though the console routines it describes are no longer used
in fbForth 2.0, they were the basis of the current routines and still use location 8354h for
storing the error.

?FLERR (---)

?FLERR issues the following error message if the last floating point operation resulted in
an error:

?FLERR ? floating point error

Note: All of the floating point operations in fbForth 2.0 reset the floating point error location,
8354h, before they run. You no longer need to insure it is reset yourself as with the GPL routines.

72 7.13 Handling Floating Point Errors

You do, however, need to check for an error before another floating point operation clears it.
Also, the message is meaningless if no floating point operation has yet occurred.

 7.14 Floating Point Error Codes

The following table lists the possible error codes reported in the byte at location 8354h after
floating-point operations:

Code Error Description

01 Overflow

02 Syntax

03 Integer overflow on conversion

04 Square root of a negative number

05 Negative number to non-integer power

06 Logarithm of a negative number

07 Invalid argument in a trigonometric function

8 Access to File I/O Using TI-99/4A Device Service Routines 73

8 Access to File I/O Using TI-99/4A
Device Service Routines

Words introduced in this chapter:

APPND INPT PABS SQNTL

CLSE INTRNL RD STAT

DIR LD REC-LEN SV

DLT OPN REC-NO SWCH

DSPLY OUTPT RLTV UNSWCH

F-D" PAB-ADDR RSTR UPDT

FILE PAB-BUF SCRTCH19 VRBL

FXD PAB-VBUF SET-PAB WRT

This chapter will explain the means by which different types of data files native to the TI-99/4A
are accessed with fbForth 2.0. To further illustrate the material, two commented examples have
been included in this chapter. The first (§ 8.7) demonstrates the use of a relative disk file and the
second (§ 8.8) a sequential RS232 file.

A group of Forth words has been included in the resident dictionary of fbForth 2.0 to permit a
Forth program to reference common data with Basic or Assembly Language programs. These
words implement the file system described in the User's Reference Guide and the
Editor/Assembler Manual. Note that the fbForth 2.0 system (as opposed to TI Forth) uses only
normally formatted disks for the system blocks file (FBLOCKS) and that you may perform file
I/O to/from any disks, including the system disks, as long as they are properly initialized by a
Disk Manager and there is enough room. You should avoid writing to TI Forth disks that contain
TI Forth blocks (screens) because you will likely destroy them.

 8.1 Switching VDP Modes After File Setup

You must be careful switching VDP modes after you set up access to a file (discussed in
following sections) because switching to/from bitmap and 80-column text modes moves the PAB
and file-setup areas (PABS) in VRAM. This will destroy access to the file! You can, however,
switch safely among graphics, text and multicolor modes without losing access to your file
information.

 8.2 The Peripheral Access Block (PAB)

Before any file access can be achieved, a Peripheral Access Block (PAB) must be set up that
describes the device and file to be accessed. Most of the words in this chapter are designed to
make manipulation of the PAB as easy as possible.

19 SCRTCH , is not part of fbForth. It is mentioned because it was defined in TI Forth. TI, however, never
implemented SCRTCH in any DSR for the TI-99/4A. Its use always resulted in a file I/O error.

74 8.2 The Peripheral Access Block (PAB)

A PAB consists of 10 bytes of VDP RAM plus as many bytes as the device name to be accessed.
An area of VDP RAM has been reserved for this purpose (consult the VDP Memory Map in
Chapter 4). The user variable PABS points to the beginning of this region. Adequate space is
provided for many PABs in this area. More information on the details of a PAB are available in
the Editor/Assembler Manual, page 293ff. The following diagram illustrates the structure of a
PAB:

Byte 0 Byte 1

I/O Opcode Flag/Status

Bytes 2 & 3

Data Buffer Address in VDP

Byte 4 Byte 5

Logical Record Length Character Count

Bytes 6 & 7

Record Number

Byte 8 Byte 9

Screen Offset (Status) Name Length

Byte 10+

File Descriptor

•
•
•

 8.3 File Setup and I/O Variables

All Device Service Routines (DSRs) on the TI-99/4A expect to perform data transfers to/from
VDP RAM. Since fbForth 2.0 is using CPU RAM, it means that the data will be moved twice in
the process of reading or writing a file. Three variables are defined in the file I/O words to keep
track of these memory areas.

PAB-ADDR (--- addr)

Holds address in VDP RAM of first byte of the PAB.

PAB-BUF (--- addr)

Holds address in CPU RAM of first byte in fbForth’s memory where allocation has been
made for this buffer.

PAB-VBUF (--- addr)

Holds address in VDP RAM of the first byte of a region of adequate length to store data
temporally while it is transferred between the file and fbForth. The area of VDP RAM
which is used for this purpose is labeled “Unused” on the VDP Memory Map in Chapter
4. If working in bitmap mode, be cautious where PAB-VBUF is placed.

8 Access to File I/O Using TI-99/4A Device Service Routines 75

There is practically no available space in bitmap mode. There are a couple of things you
can do. You can set simultaneous files to 1 with 1 FILES to free up 518 bytes between
the old value in 8370h and the new value put there after executing 1 FILES . This
should be safe as long as you do not read/write blocks because fbForth only opens a file
to read/write one block. The blocks file is closed the rest of the time.

The other thing you can do is to temporarily use the bitmap color and/or screen image
tables by saving and restoring the area you want to use. It might even be rather
entertaining to watch your file I/O happen on the screen!

FILE (vaddr1 addr vaddr2 ---)

The word FILE is a defining word and permits you to create a word which is the name by
which the file will be known. A decision must be made as to the location of each of the
buffers before the word FILE may be used. The values to be used for those locations are
contained in the above variables and are placed on the stack in the above order followed
by FILE and the file name (not necessarily the device name). For example:

Using The Defining Word, FILE

0 VARIABLE MY-BUF 78 ALLOT (Create 80-character RAM buffer)

PABS @ 10 + (PAB starts 10 bytes into VRAM
region for PABS and this address will
be stored in PAB-ADDR)

MY-BUF (RAM address to be stored in
PAB-BUF)

6000 (A free area at 1770h in VRAM to be
stored in PAB-VBUF)

FILE JOE (Whenever the word JOE is executed,
the file I/O variables, PAB-ADDR ,
PAB-BUF and PAB-VBUF , will be set
as defined here.)

JOE (Use the file’s identifying word (FID)
before using any other file I/O words)

SET-PAB (---)

The word that creates the PAB skeleton is SET-PAB . It creates a PAB at the address
shown in PAB-ADDR and zeroes the first ten bytes. It then places the contents of the
variable PAB-VBUF into its PAB location at bytes 2 and 3. Obviously, PAB-ADDR and
PAB-VBUF must be set up before SET-PAB is invoked, which is done by executing the
file identifying word (JOE , in the above example) before SET-PAB . SET-PAB should
be executed only once for each file and should immediately follow the first invocation of
the file ID word.

 8.4 File Attribute Words

Files on the TI-99/4A have various characteristics that are indicated by keywords. The following
table describes the available options. The example in the back of the chapter will be helpful in
that it shows at what time in the procedure these words are used. Use only the attributes which

76 8.4 File Attribute Words

apply to your file and ignore the others. Remember, if you are using multiple files, then the file
referenced is the file whose name word was most recently executed.

Options From

Attribute Type TI Basic fbForth Description

File Type SEQUENTIAL SQNTL* Records may only be accessed in
sequential order

 RELATIVE RLTV Accessed in sequential or random order.
Records must be of fixed length

Record Type FIXED FXD* All records in the file are the same length

 VARIABLE VRBL Records in the same file may have
different lengths

Data Type DISPLAY DSPLY* File contains printable or displayable
characters

 INTERNAL INTRNL File contains data in machine or binary
format

Mode of
Operation

 INPUT INPT File contents can be read from, but not
written to

 OUTPUT OUTPT File contents can be written to, but not
read from

 UPDATE UPDT* File contents can be written to and read
from

 APPEND APPND Data may be added to the end of the file,
but cannot be read

* Default if attribute is not specified

REC-LEN (b ---)

To specify the record length for a file, the desired length byte b should be on the stack
when the word REC-LEN is executed. The length will be placed in the current PAB.

F-D" (---)

Every file must have a name to specify the device and file to be accessed. This is
performed with the F-D" word, which enters the File Description in the PAB. F-D" must
be followed by a string describing the file and terminated by a " mark. Here are a few
examples of the use of F-D" :

F-D" RS232.BA=9600" ok:0

F-D" DSK2.FILE-ABC" ok:0

 8.5 Words that Perform File I/O

The actual I/O operations are performed by the following words. The table gives the usual TI
Basic keyword associated with the corresponding fbForth word. Here, as in the previous table,

8 Access to File I/O Using TI-99/4A Device Service Routines 77

the fbForth words are spelled differently than the TI Basic words to avoid conflict with one or
more existing fbForth words.

From TI Basic From fbForth DSR Opcode

OPEN OPN 0

CLOSE CLSE 1

READ RD 2

WRITE WRT 3

RESTORE RSTR 4

LOAD LD 5

SAVE SV 6

DELETE DLT 7

STATUS STAT 9

OPN (---)

opens the file specified by the currently selected PAB, which is pointed to by PAB-ADDR .

CLSE (---)

closes the file whose PAB is pointed to by PAB-ADDR .

REC-NO (n ---)

Before using the RD and WRT instructions with a relative file, you must place the desired,
zero-based record number n into the PAB. To do this, place the record number n on the
stack and execute the word REC-NO . If your file is sequential, you need not do this.

RD (--- n)

The RD instruction will transfer the contents of the next record from the current file into
your PAB-BUF via your PAB-VBUF and leave a character count n on the stack.

WRT (n ---)

takes a character count n from the stack and moves that number of characters from your
PAB-BUF via your PAB-VBUF to the current file.

RSTR (n ---)

takes a record number n from the stack and repositions (restores) a relative file to that
record for the next access.

LD (n ---)

used to load a program file of maximum n bytes into VDP RAM at the address specified
in PAB-VBUF . OPN and CLSE need not be used.

SV (n ---)

used to save n bytes of a program file from VDP RAM at the address specified in
PAB-VBUF . OPN and CLSE need not be used.

78 8.5 Words that Perform File I/O

DLT (---)

is used to delete the file whose PAB is pointed to by PAB-ADDR .

STAT (--- b)

returns the status byte b (PAB+8, labeled “Screen Offset” in the PAB diagram above) of
the current device/file from the PAB pointed to by PAB-ADDR after calling the DSR’s
STATUS opcode (9), which actually gets the status and writes it to PAB+8. Incidentally,
the term “Screen Offset” for PAB+8 is from its use by the cassette interface, which must
put prompts on the screen, to get the offset of screen characters with respect to their
normal ASCII values. The table below, excerpted from the Editor/Assembler Manual,
p. 298, shows the meaning of each bit of the status byte:

Status Byte Information When Value is

Bit 1 0

0 File does not exist. File exists. If device is a printer or
similar, always 0.

1 Protected file. Unprotected file.

2 Reserved for future use. Always 0.

3 INTERNAL data type. DISPLAY data type or program file.

4 Program file. Data file.

5 VARIABLE record length. FIXED record length.

6 At physical end of peripheral. No
more data can be written.

Not at physical end of peripheral.
Always 0 when file not open.

7 End of file (EOF). Can be written if
open in APPEND, OUTPUT or
UPDATE modes. Reading will cause
an error.

Not EOF. Always 0 when file not
open.

Almost all of the file I/O support words of TI Forth and fbForth 1.0 are no longer available in
fbForth 2.0 as high-level Forth definitions. They have been defined in TMS9900 Assembly
Language as part of the resident dictionary and are no longer directly executable. If the user
desires more information from a file I/O error condition than the fact that a file I/O error
occurred, the following definition can be used to retrieve the flag/status byte from the file’s PAB:

 : GET-FLAG PAB-ADDR @ 1+ VSBR ;

The following describes in detail the information that can be obtained with GET-FLAG :

GET-FLAG (--- b)

retrieves to the stack the flag/status byte b from byte 1 the current PAB. The high-order
3 bits are used for DSR error return, except for “bad device name”. With the “bad device
name” error, this error return will be 0, but the GPL status byte (837Ch) will have the
COND bit set (20h). The low-order 5 bits are set by routines that set the file type prior to

8 Access to File I/O Using TI-99/4A Device Service Routines 79

calling OPN , which reads these bits. See table below for the meaning of each bit of the
flag/status byte:

Flag/Status Byte of PAB (Byte 1)
Bits Contents Meaning

0‒2 Error Code 0 = no error. Error codes are decoded in table below.

3 Record Type 0 = fixed-length records; 1 = variable-length records.

4 Data Type 0 = DISPLAY; 1 = INTERNAL.

5‒6 Mode of Operation 0 = UPDATE; 1 = OUTPUT; 2 = INPUT; 3 = APPEND.

7 File Type 0 = sequential file; 1 = relative file.

Error Codes in Bits 0‒2 of Flag/Status Byte of PAB
Error
Code Meaning

0 No error unless bit 2 of status byte at address 837Ch is set (then, bad
device name).

1 Device is write protected.

2 Bad OPEN attribute such as incorrect file type, incorrect record length,
incorrect I/O mode or no records in a relative record file.

3 Illegal operation; i.e., an operation not supported on the peripheral or a
conflict with the OPEN attributes.

4 Out of table or buffer space on the device.

5 Attempt to read past the end of file. When this error occurs, the file is
closed. Also given for non-extant records in a relative record file.

6 Device error. Covers all hard device errors such as parity and bad
medium errors.

7 File error such as program/data file mismatch, non-existing file opened
in INPUT mode, etc.

Examples of file I/O in use are shown in § 8.7 , § 8.8 and block 19ff in FBLOCKS (dated
01SEP2014 or later, which has definitions of the alternate I/O capabilities for printing to the
RS232 interface).

 8.6 Alternate Input and Output

When using alternate input or output devices, the 1-byte buffer in VDP memory must be the byte
immediately preceding the PAB for ALTIN or ALTOUT .

The words

SWCH (---) and

UNSWCH (---)

80 8.6 Alternate Input and Output

make it possible to send output that would normally go to the monitor to an RS232 serial
printer. For example, the LIST instruction normally outputs to the monitor. By typing

 SWCH 45 LIST UNSWCH

you can list block 45 of the current blocks file to the printer. If your RS232 printer is not on port
1 and set at 9600 baud or you would rather print via the parallel port, you must modify the word
SWCH in block 19 of FBLOCKS.

The user variables

ALTIN (--- vaddr) and

ALTOUT (--- vaddr)

contain values which point to the current input and output devices. The value of ALTIN is
0 if input is coming from the keyboard. Otherwise, its value is a pointer to the VDP
address where the PAB for the alternate input device is located. The value of ALTOUT is 0
if the output is going to the monitor. Otherwise, it contains a pointer to the PAB of the
alternate output device.

 8.7 File I/O Example 1: Relative Disk File

Instruction Comment

HEX Change number base to hexadecimal
0 VARIABLE BUFR 3E ALLOT Create space for a 64 byte buffer which will be the PAB-BUF
PABS @ A + PAB starts 10 bytes into PABS . This will be the PAB-ADDR
BUFR 1700 Place the PAB-BUF and PAB-VBUF on stack in preparation

for FILE
FILE TESTFIL Associates the name TESTFIL with these three parameters
TESTFIL File name must be executed before using any other File I/O

words
SET-PAB Create PAB skeleton
RLTV Make TESTFIL a relative file
DSPLY Records will contain printable information
40 REC-LEN Record length is 64 (40h) bytes
F-D" DSK2.TEST" Will create the file descriptor “DSK2.TEST” in the PAB for

TESTFIL .

OPN Open the file in the default (UPDATE) mode. This will
create the file on disk unless it already exists.

To write more than one record to the file, it is necessary to write a procedure. This routine may
be composed in a Forth block beforehand and loaded at this time.

: FIL-WRT TESTDATA TESTDATA is assumed to be the beginning memory address
of the information to be written to the file

 10 0 DO Want to write 16 (10h) records

8 Access to File I/O Using TI-99/4A Device Service Routines 81

 DUP Duplicate address
 BUFR 40 CMOVE Move 64 bytes of information into the PAB-BUF
 I REC-NO Place record number into PAB
 40 WRT Write one 64-byte record to the disk
 40 + Increment address for next record
 LOOP DROP Clear stack

; End definition

FIL-WRT Execute writing procedure
4 REC-NO RD Choose a record number to read (4 is chosen here) to verify

correct output. A byte count will be left on the stack and the
read information will be in BUFR

BUFR 40 DUMP Print out the read information to the monitor. (DUMP
routines must be loaded from block 16 of FBLOCKS)

CLSE Close the file

 8.8 File I/O Example 2: Sequential RS232 File

Instruction Comment

HEX Change number base to hexadecimal
0 VARIABLE MY-BUF 4E ALLOT Create an 80-character PAB-BUF
PABS @ 30 + Skip all previous PABs. This will be the PAB-ADDR
MY-BUF 1900 Place the PAB-BUF and PAB-VBUF on stack in

preparation for FILE
FILE PRNTR Associates the name PRNTR with these three parameters
PRNTR File name must be executed before using any other File

I/O words
SET-PAB Create a PAB skeleton
DSPLY PRNTR will contain printable information
SQNTL PRNTR may be accessed only in sequential order
VRBL Records may have variable lengths
50 REC-LEN Maximum record length is 80 char.
F-D" RS232.BA=9600" or
F-D" PIO"

PRNTR will be an RS232 serial “file” with baud rate =
9600 or a parallel printer “file”.

OPN Open the file

A procedure is necessary to write more than one record to a file. A file-write routine may be
composed in a Forth block beforehand and loaded at this time. The following is a simple
example:

: PRNT FILE-INFO FILE-INFO is assumed to be the beginning memory
address of the information to be sent to the printer

 20 0 DO Will write 32 records

82 8.8 File I/O Example 2: Sequential RS232 File

 DUP Duplicate address
 MYBUF 50 CMOVE Move 80 characters from FILE-INFO to MY-BUF
 50 WRT Write one record to printer
 50 + Increment address on stack
 LOOP DROP Clear stack
; End definition

PRNT Execute write program
CLSE Close the file called PRNTR

 8.9 Disk Catalog Utilities

Two different disk cataloging utilities are available in FBLOCKS dated 19JUN2015 and later.

 8.9.1 DIR

DIR is adapted, with permission, from Mark Wills’ TurboForth1 and, though available in
FBLOCKS dated as early as 17OCT2014, only the version that first appears in the 19JUN2015
edition should be used:

DIR (---)

DIR catalogs to the output device the disk device name that follows it in the input stream.
The disk device name must be terminated with a period. DIR gets its information from
the DSR’s catalog “file” (see Chapter 8 “Catalog File Access” in TI’s Software
Specifications for the 99/4 Disk Peripheral). DIR will not load if CAT (below) is loaded.
Use MENU to show what block to load for DIR .

Usage: DIR DSK1.

Example:

8 Access to File I/O Using TI-99/4A Device Service Routines 83

 8.9.2 CAT

CAT (n ---)

CAT catalogs to the output device the disk number n on the stack for the current DSR.

CAT reads the Volume Information Block (VIB) to get the disk name, total sectors and
free sectors. The free sectors are calculated by adding all the zero bits in the allocation
bitmap found in the VIB.

Next, CAT reads the File Descriptor Index Record (FDIR) and finds each file’s File
Descriptor Record (FDR) from the sector pointers in the FDIR.

Each FDR has the file’s name, file type, sectors occupied by the file, protection and EOF
byte offset in the last sector. The EOF offset and the sector count are used to calculate the
actual size in bytes of a PROGRAM file. The sector size that CAT displays for a file is
one more than the size of the file body to account for the file’s FDR. See Appendix K ,
“Diskette Format Details” for more specific information about the VIB, FDIR and FDR.

CAT will not load if DIR is loaded.

Usage: 2 CAT to catalog DSK2.

Example:

84 9 The fbForth 2.0 TMS9900 Assembler

9 The fbForth 2.0 TMS9900 Assembler
The assembler supplied with your fbForth 2.0 system is typical of assemblers supplied with fig-
Forth systems and is almost identical with the TI Forth assembler—there are some enhancements.
It provides the capability of using all of the opcodes of the TMS9900 as well as the ability to use
structured assembly instructions. It uses no labels. The complete fbForth 2.0 language is avail-
able to the user to assist in macro type assembly, if desired. The assembler uses the standard
Forth convention of Reverse Polish or Postfix Notation for each instruction. For example, the
instruction to add register 1 to register 2 is:

 R1 R2 A,

As can be seen in the above example, the ‘add’ instruction mnemonic is followed by a comma.
Every opcode in this Forth assembler is followed by a comma. The significance is that when the
opcode is reached during the assembly process, the instruction is compiled into the dictionary.
The comma is a reminder of this compile operation. It also serves to assist in differentiating
assembler words from the rest of the words in the fbForth 2.0 language. A complete list of
Forth-style instruction mnemonics is given in the next section.

Before going on, it would be a good idea to familiarize yourself with Chapter 12 “fbForth 2.0
Dictionary Entry Structure” to ensure you understand the structure of fbForth 2.0 words.

 9.1 TMS9900 Assembly Mnemonics

A, JGT, RTWP,
AB, JH, S,
ABS, JHE, SB,
AI, JL, SBO,
ANDI, JLE, SBZ,
B, JLT, SETO,
BL, JMP, SLA,
BLWP, JNC, SOC,
C, JNE, SOCB,
CB, JNO, SRA,
CI, JOC, SRC,
CKOF, JOP, SRL,
CKON, LDCR, STCR,
CLR, LI, STST,
COC, LIMI, STWP,
CZC, LREX, SWPB,
DEC, LWPI, SZC,
DECT, MOV, SZCB,
DIV, MOVB, TB,
IDLE, MPY, THEN,
INC, NEG, X,
INCT, ORI, XOP,
INV, RSET, XOR,
JEQ, RT,

These words are available when the assembler is loaded. Only the words C, and R0 (see later)
conflict with the existing fbForth 2.0 vocabulary.

9 The fbForth 2.0 TMS9900 Assembler 85

Most assembly code in fbForth 2.0 will probably use fbForth 2.0’s workspace registers. The
following table describes the register allocation. The user may use registers R0 through R7 for
any purpose. They are used as temporary registers only within fbForth words which are
themselves written in TMS9900 assembly/machine code (ALC).

 9.2 fbForth 2.0’s Workspace Registers

Register Name

UsageOriginal Alternate

0 R0

1 R1

2 R2

3 R3 These registers are available. They are used only within
fbForth words written in ALC.4 R4

5 R5

6 R6

7 R7

UP R8 Points to base of User Variable area

SP R9 Parameter Stack Pointer

W R10 Inner Interpreter current Word pointer

11 R11 Linkage for subroutines in ALC routines

12 R12 Used for CRU instructions

IP R13 Interpretive Pointer

RP R14 Return Stack Pointer

NEXT R15 Points to the next instruction fetch routine

 9.3 Loading and Using the Assembler

The fbForth 2.0 TMS9900 Assembler is located in blocks 21 ‒ 26 of FBLOCKS and is loaded
by typing 21 LOAD . The words ASM: , DOES>ASM: , CODE: , DOES>CODE: and ;CODE are in
the resident dictionary and part of the Forth vocabulary. When the assembler is loaded, it is
loaded into the Assembler vocabulary. To use the assembler, it must be the context vocabulary,
which may be effected by typing ASSEMBLER or by using the words ASM: or DOES>ASM: , each
of which makes Assembler the context vocabulary.

There are only two words in the Assembler vocabulary that are part of the resident dictionary,
namely, ;ASM and its synonym, NEXT, . After defining words that use ASM: or DOES>ASM: , it is
advisable to execute FORTH to restore the context vocabulary to Forth, unless such use is
immediately followed by : (beginning a colon definition), which restores the context vocabulary
to the current vocabulary (usually Forth). The important point is that Forth must be the context
vocabulary before the Forth words C, and R0 can be executed because C, and R0 are the only

86 9.3 Loading and Using the Assembler

Assembler vocabulary words that conflict with Forth vocabulary words of the same name.

The use of CODE , ;CODE and NEXT, , though still supported, is deprecated in favor of the
identical but clearer ASM: , DOES>ASM: and ;ASM , respectively. Please keep this in mind when
attempting to compare fbForth 2.0 code using them with TI Forth code, which, obviously can
only use the former.

An Assembly definition begins with ASM: . It is followed by assembly mnemonics and
terminated with ;ASM . ASM: is used in the following way:

ASM: EXAMPLE <assembly mnemonics> ;ASM

Equivalently, machine code, which does not require the Assembler, may be used in place of
assembly mnemonics with

CODE: EXAMPLE <machine code> ;CODE

Each defines a Forth word named EXAMPLE with an execution procedure defined by the assembly
mnemonics or machine code that follow EXAMPLE , which must terminate with ;ASM . The
assembly code ends with ;ASM , so the fbForth 2.0 inner interpreter can get to the next word to
be executed. There are several examples using ASM: in the sections that follow.

DOES>ASM: is used with <BUILDS to create the execution procedure of a new defining word very
much like the word DOES> except that DOES>ASM: does not cause the pfa of newly defined
words to be left on the stack for the consumption of the code following DOES>ASM: as is the case
with DOES> . DOES>ASM: is used as follows:

: DEF-WRD <BUILDS … DOES>ASM: <assembly mnemonics> ;ASM

Just as with ASM: , assembly code following DOES>ASM: must end with ;ASM . Later, when the
newly created defining word DEF-WRD is executed in the following form, a new word is defined:

DEF-WRD TEST

This will create the word TEST which has as its execution procedure the code following
DOES>ASM: . An example using DOES>ASM: is shown in § 9.10 .

Just as with CODE: , DOES>CODE: can be used to create the same defining word without needing
to load the Assembler (see example in § 9.11):

: DEF-WRD <BUILDS … DOES>CODE: <machine code> ;CODE

 9.4 fbForth 2.0 Assembler Addressing Modes

We will now introduce those words that permit this assembler to perform the various addressing
modes of which the TMS9900 is capable. Each of the remaining examples will show the
fbForth 2.0 assembler code (column 1) for various instructions, the TI Forth code (column 2)
and the conventional Assembler (column 3) method of coding the same instructions. The Wycove
Forth equivalents of the fbForth 2.0 addressing mode words may also be used. The TI Forth
code can be used in fbForth 2.0 with no changes.

;ASM is defined as

: ;ASM *NEXT B, ;

and is equivalent to the following assembly code:
B *R15

9 The fbForth 2.0 TMS9900 Assembler 87

 9.4.1 Workspace Register Addressing

The registers in the fbForth 2.0 code below can be referenced directly by number. However, we
are using the alternate, easier-to-read R designation:

fbForth 2.0 TI Forth Conventional Assembler

HEX HEX

ASM: EX1 CODE EX1 DEF EX1

 R1 R2 A, 1 2 A, EX1 A R1,R2

 R3 INC, 3 INC, INC R3

 R3 FFFC ANDI, 3 FFFC ANDI, ANDI R3,>FFFC

;ASM NEXT, B *R15

 9.4.2 Symbolic Memory Addressing

Symbolic addressing is done with the @() word (Wycove Forth equivalent: @@). It is used after
the address.

fbForth 2.0 TI Forth Conventional Assembler

0 VARIABLE VAR1 0 VARIABLE VAR1 VAR1 BSS 2

5 VARIABLE VAR2 5 VARIABLE VAR2 VAR2 DATA 5

ASM: EX2 CODE EX2 DEF EX2

 VAR2 @() R1 MOV, VAR2 @() 1 MOV, EX2 MOV @VAR2,R1

 R1 2 SRC, 1 2 SRC, SRC R1,2

 R1 VAR1 @() S, 1 VAR1 @() S, S R1,@VAR1

 VAR2 @() VAR1 @() SOC, VAR2 @() VAR1 @() SOC, SOC @VAR2,@VAR1

;ASM NEXT, B *R15

 9.4.3 Workspace Register Indirect Addressing

Workspace Register Indirect addressing is done with the *? word (Wycove Forth equivalent:
**). It is used after the register number to which it pertains. In line 4 below we use the clearer
definition of § 9.4.6 for fbForth 2.0. TI Forth must use *? .

fbForth 2.0 TI Forth Conventional Assembler

HEX 2000 CONSTANT XRAM HEX 2000 CONSTANT XRAM XRAM EQU >2000

ASM: EX3 CODE EX3 DEF EX3

 R1 XRAM LI, 1 XRAM LI, EX3 LI R1,XRAM

 *R1 R2 MOV, 1 *? 2 MOV, MOV *R1,R2

;ASM NEXT, B *R15

88 9.4 fbForth 2.0 Assembler Addressing Modes

 9.4.4 Workspace Register Indirect Auto-increment Addressing

Workspace Register Indirect Auto-increment addressing is done with the *?+ word (Wycove
Forth equivalent: *+). It is also used after the register to which it pertains. In line 4 below we
use the clearer definition of § 9.4.6 for fbForth 2.0. TI Forth must use *?+ .

fbForth 2.0 TI Forth Conventional Assembler

HEX 2000 CONSTANT XRAM HEX 2000 CONSTANT XRAM XRAM EQU >2000

ASM: EX4 CODE EX4 DEF EX4

 R1 XRAM LI, 1 XRAM LI, EX4 LI R1,XRAM

 *R1+ R2 MOV, 1 *?+ 2 MOV, MOV *R1+,R2

;ASM NEXT, B *R15

 9.4.5 Indexed Memory Addressing

The final addressing type is Indexed Memory addressing. This is performed with the @(?) word
(Wycove Forth equivalent: ()) used after the Index and register as shown below. Here we use
the clearer definition of § 9.4.6 for fbForth 2.0. TI Forth must use @(?) .

fbForth 2.0 TI Forth Conventional Assembler

HEX 2000 CONSTANT XRAM HEX 2000 CONSTANT XRAM XRAM EQU >2000

ASM: EX5 CODE EX5 DEF EX5

 XRAM @(R1) R2 MOV, XRAM 1 @(?) 2 MOV, EX5 MOV @XRAM(R1),R2

 DECIMAL DECIMAL

 XRAM 22 + @(R2) XRAM 22 + 2 @(?) MOV @XRAM+22(R2),@XRAM+26(R2)

 XRAM 26 + @(R2) MOV, XRAM 26 + 2 @(?) MOV,

;ASM NEXT, B *R15

 9.4.6 Addressing Mode Words for Special Registers

In order to make addressing modes easier for the W , RP , IP , SP , UP and NEXT as well as all the
numbered registers (R0 – R15), the following words are available and eliminate the need to enter
the register name separately. The register number (0 – 15) in the last entry is represented by n :

Register
Address Indirect Indexed

Indirect
Auto-increment

W *W @(W) *W+

RP *RP @(RP) *RP+

IP *IP @(IP) *IP+

SP *SP @(SP) *SP+

UP *UP @(UP) *UP+

NEXT *NEXT @(NEXT) *NEXT+

Rn *Rn @(Rn) *Rn+

9 The fbForth 2.0 TMS9900 Assembler 89

 9.5 Handling the fbForth 2.0 Stacks

Both the parameter stack and the return stack grow downward in memory. This means that
removing a cell from the top of either stack requires incrementing the stack pointer after
consuming the cell’s value. Conversely, adding a cell requires decrementing the stack pointer.
The fbForth 2.0 Assembler word *SP+ references the contents of the top cell of the parameter
stack and then increments the stack pointer SP to reduce the size of the stack by one cell. The
following code copies the contents of the stack’s top cell to register 0 and reduces the stack by
one cell:

*SP+ R0 MOV,

The following code adds a cell to the top of the stack and copies the contents of register 1 to the
new cell:

SP DECT,

R1 *SP MOV,

The same procedures obtain for the return stack using *RP+ , RP and *RP . If you must
manipulate the return stack, be very careful that you restore it properly when you are finished and
before the system needs it.

 9.6 Structured Assembler Constructs

Though you may certainly use the jump instructions in your programming (see § 9.9 “Jump
Instructions (If You Must!)”), the Forth Assembler permits you to write structured code, i.e., code
that does not use labels. This is done in a manner very similar to the way that fbForth 2.0
implements conditional constructs. The major difference is that rather than taking a value from
the stack and using it as a true/false flag, the processor’s condition register is used to determine
whether or not to jump. The following structured constructs are implemented:

IF, … THEN, [also IF, … ENDIF,]

IF, … ELSE, … THEN, [also IF, … ELSE, … ENDIF,]

BEGIN, … UNTIL,

BEGIN, … AGAIN,

BEGIN, … WHILE, … REPEAT,

Note that THEN, is a synonym for TI Forth’s ENDIF, . THEN, is used in the fbForth 2.0
Assembler example below, but the ENDIF, of the TI Forth example works, as well. Be sure you
have FBLOCKS dated 01SEP2014 or later before you attempt to use THEN, .

The three conditional words in the previous list (IF, UNTIL, WHILE,) must each be preceded
by one of the jump tokens in the next section.

90 9.7 Assembler Jump Tokens

 9.7 Assembler Jump Tokens

Token Comment Conventional
Assembler Used

Machine Code
Generated

EQ True if = JNE $+2 1600h

GT True if signed > JGT $+4 JMP $+2 1501h 1000h

GTE True if signed > or = JLT $+2 1100h

H True if unsigned > JLE $+2 1200h

HE True if unsigned > or = JL $+2 1A00h

L True if unsigned < JHE $+2 1400h

LE True if unsigned < or = JH $+2 1B00h

LT True if signed < JLT $+4 JMP $+2 1101h 1000h

LTE True if signed < or = JGT $+2 1500h

NC True if No Carry JOC $+2 1800h

NE True if equal bit not set JEQ $+2 1300h

NO True if No overflow JNO $+4 JMP $+2 1901h 1000h

NP True if Not odd Parity JOP $+2 1C00h

OC True if Carry bit is set JNC $+2 1700h

OO True if Overflow JNO $+2 1900h

OP True if Odd Parity JOP $+4 JMP $+2 1C01h 1000h

 9.8 Assembly Example for Structured Constructs

The following example is designed to show how these jump tokens and structured constructs are
used:

fbForth 2.0 TI Forth Conventional Assembler

(GENERALIZED SHIFTER) (GENERALIZED SHIFTER) * GENERALIZED SHIFTER

ASM: SHIFT CODE SHIFT DEF SHIFT

 *SP+ R0 MOV, *SP+ 0 MOV, SHIFT MOV *SP+,R0

 NE IF, NE IF, JEQ L3

 *SP R1 MOV, *SP 1 MOV, MOV *SP,R1

 R0 ABS, 0 ABS, ABS R0

 GTE IF, GTE IF, JLT L1

 R1 R0 SLA, 1 0 SLA, SLA R1,0

 ELSE, ELSE, JMP L2

 R1 R0 SRL, 1 0 SRL, L1 SRL R1,0

 THEN, ENDIF,

 R1 *SP MOV, 1 *SP MOV, L2 MOV R1,*SP

 THEN, ENDIF,

;ASM NEXT, L3 B *R15

9 The fbForth 2.0 TMS9900 Assembler 91

One word of caution is in order. The structured constructs shown above do not check to ensure
that the jump target is within range (+127, -128 words). They do, however, force the jump target
to that range by masking off any high-order bits exceeding one byte, which will certainly not be
what you intend. This will be a problem only with very large assembly language definitions and
will violate the Forth philosophy of small, easily understood words.

 9.9 Jump Instructions (If You Must!)

This section is provided only for the sake of completeness. It is easier and better to use the
structured programming described in § 9.6 “Structured Assembler Constructs”. Using the jump
instructions (JEQ, , JGT, , JH, , JHE, , JL, , JLE, , JLT, , JMP, , JNC, , JNE, ,
JNO, , JOC, and JOP,) is not recommended for a couple of reasons:

1. As already mentioned, a better programming style is available.

2. Their use in the Forth Assembler is not comparable to the Editor/Assembler version and
is, thereby, error prone.

For the Editor/Assembler version, you give the jump instruction the value of a label as the jump
target, e.g.:

 JEQ LABEL2

⋮
LABEL2 ...

and the Assembler calculates the jump distance and direction for you and stores the value in the
LSB of the jump instruction’s machine code..

For the Forth Assembler, you must first calculate the jump distance and direction by taking the
difference between the jump target’s address and the address of the instruction following the jump
instruction. Then, you must divide by 2 to convert to a word distance and direction. Finally, you
should insure the value fits in a single byte. In other words, you must manually assemble part of
the instruction’s machine code. You will likely need to define your Forth Assembler word first,
using a placeholder for the jump distance and direction, to make it easier to find the jump
distance and direction. Then, FORGET the word just defined so you can replace the placeholder
with the actual value. Here is an example, using FFh as a placeholder:

HEX
0FF JEQ,

 9.10 Assembly Example with DOES>ASM:

Before giving an example of defining an fbForth 2.0 defining word that uses DOES>ASM: , an
explanation of why you might want to use it in the first place is in order.

The defining words that are part of the fbForth 2.0 kernel are : (paired with ;), VARIABLE ,
CONSTANT , USER , VOCABULARY , <BUILDS (with DOES> , DOES>ASM: or DOES>CODE:),
ASM: , CODE: and CREATE . Of course, most words you would ever need to define can be
created with the first three (: , VARIABLE and CONSTANT). However, you too can use <BUILDS
and CREATE , the same words used for defining most of the above, for the eventuality that these
do not suffice.

92 9.10 Assembly Example with DOES>ASM:

In fbForth 2.0, it is not useful to use CREATE on the command line unless you really know what
you are doing because it creates a dictionary header in which the smudge bit is set and the code
field points at the parameter field with no storage allotted for it. This means that the parameter
field must be allotted with executable code (or the code field changed to point to some) and the
smudge bit must be reset so a dictionary search can find the word. The same discussion obtains
for <BUILDS except for the smudge bit because <BUILDS is defined in fbForth 2.0 as

: <BUILDS CREATE SMUDGE ; (SMUDGE toggles the smudge bit.)

This situation is made easier by using <BUILDS , DOES> and DOES>ASM: within colon
definitions as

: NEW_DEFINING_WORD <BUILDS … DOES> … ;

or

: NEW_DEFINING_WORD <BUILDS … DOES>ASM: … ;ASM

You simply replace the first “…” with words you want to execute when NEW_DEFINING_WORD is
compiling a new word, e.g., to reserve space for and store a value in the first cell of the parameter
field using , . You then replace the second “…” with code to be executed when the new word
actually executes. It will be this code to which the code field of the new word will point.

Here, now, is an example of the use of DOES>ASM: in the definition of a defining word, i.e., a
word that creates new words:

CONSTANT is an fbForth 2.0 word that defines a word, the value of which is pushed to the stack
when the word is executed.

9 CONSTANT XXX

defines the word XXX with 9 in its parameter field and the address of the execution code of
CONSTANT in its code field. fbForth 2.0 defines CONSTANT in high-level Forth essentially as

: CONSTANT <BUILDS , DOES> @ ;

Using DOES>ASM: , it could also be defined with Assembler code as

: CONSTANT Start colon definition of CONSTANT .
<BUILDS CONSTANT will create a dictionary header for the word

appearing after it in the input stream when CONSTANT is
executed. The new word’s cfa will point to the address
immediately following the cfa. This will be the new word’s pfa,
but no space will be allocated for the pfa.

, Comma expects a number on the stack, which it will store at the
pfa of the new word, allocating space for it.

DOES>ASM: The new word’s cfa will be changed to point to machine code
that follows DOES>ASM: here in CONSTANT . The following
machine code is what will run when the new word is executed:

SP DECT, Make space on the stack.
*W *SP MOV, Copy current (newly defined) word’s parameter field contents to

the stack. [W (R10) contains the current word’s pfa.]
;ASM Return to the interpreter.

9 The fbForth 2.0 TMS9900 Assembler 93

which, once you know the machine code, can be coded without the Assembler loaded as

HEX

: CONSTANT <BUILDS , DOES>CODE: 0649 C65A ;CODE

For CONSTANT , the first, high-level definition is easier to understand. They are both the same
length. In this case, they both create words of the same length. However, there may come a time
when only Assembler will do your bidding and DOES>ASM: offers that facility.

 9.11 ASM: and DOES>ASM: without the Assembler

fbForth 2.0 words using ASM: or DOES>ASM: can be written without the 3208-byte overhead of
the fbForth 2.0 Assembler by using the machine code equivalent to assembly code.

Important Note: ASM>CODE (see entry in Appendix D) can be used to convert words written
using ASM: to their CODE: counterparts. Unfortunately, this convenience does not extend to
words that use DOES>ASM: .

This section details how you can convert by hand words that use ASM: or DOES>ASM: to CODE:
or DOES>CODE: , respectively. It is much more painful than with ASM>CODE for ASM: to CODE: ,
but explains the gory details. And, of course, you have no choice with the conversion of
DOES>ASM: to DOES>CODE: .

Until you have tested and debugged your work, it is probably best to work with one Forth word at
a time in an fbForth 2.0 block.

1. Write, test and debug your Forth word using the fbForth 2.0 Assembler. Here, we'll use
EX5 from § 9.4.5 for the ASM: example and CONSTANT (renamed CONST2 to avoid
confusion) from § 9.10 for the DOES>ASM: example.

2. Ensure that the fbForth 2.0 Assembler is loaded by executing 21 LOAD .

3. Ensure that the dump routines are loaded by executing 16 LOAD .

4. Load the screen that contains the definition of your Forth word and continue with (5) in
the appropriate section below.

 9.11.1 ASM: without the Assembler

Refer to the example in § 9.4.5 for the following:

5. Use ' to find the pfa of EX5 and dump from the pfa to the end of the word:
HERE ' EX5 SWAP OVER - DUMP

will dump this to the screen:
AE52: C0A1 2000 C8A2 2016
AE5A: 201A 045F .._
ok:0

The column at the left indicates the addresses in RAM where the hexadecimal cells to the
right are located. The 8-character, right-hand column is their ASCII representation.

6. The last cell should be 045Fh, corresponding to the ;ASM instruction.

7. Write the high-level part of the word with CODE: instead of ASM: (CODE: EX5)
followed by the machine code after EX5 using the dump above to transcribe the

94 9.11 ASM: and DOES>ASM: without the Assembler

hexadecimal value for each cell starting with the first cell (parameter field) and ending
with ;CODE (instead of 045Fh) as follows:

HEX
CODE: EX5 C0A1 2000 C8A2 2016 201A ;CODE

You may have noticed that the machine code between CODE: and ;CODE is not compiled
with , as it is in TI Forth. This is because CODE: employs its own interpreter to attempt
to first convert tokens in the input stream to numbers, whereas the Forth outer interpreter
first tries to find the tokens in the dictionary. The upshot of this is that you must now use
N>S between CODE: and ;CODE if you need a number pushed to the stack.

8. If all the code was assembly code, you're done. Otherwise, you need to replace values
that can vary from one load to the next, such as variables, named constants and dictionary
entries not part of the resident dictionary, with the high-level code used in the word's
assembly language definition and compile them into the definition yourself. In the above
example, the constant XRAM was used, so we need to replace the value 2000h with the
reference that put it there. In this case XRAM is used three times to get the cells with
2000h, 2016h and 201Ah. We need to replace the 2000h with XRAM , the 2016h with
XRAM 16 + and the 201Ah with XRAM 1A + to get

HEX
CODE: EX5

 C0A1 XRAM , C8A2 XRAM N>S 16 + , XRAM N>S 1A + ,
;CODE

which can now be entered in an fbForth 2.0 block to be loaded without the Assembler
overhead.

Notice the use of , and N>S in the code above. XRAM is not recognized as a number by
CODE: , so you must compile it with , . 16 is a number we want on the stack to add to
XRAM before compiling the result, so we must prevent CODE: from compiling it by using
N>S to push it to the stack. The same situation obtains for XRAM N>S 1A + , .

You should test your new version of the word to verify that it is identical to the original
assembly version.

 9.11.2 DOES>ASM: without the Assembler

We need to do more work with DOES>ASM: than we did with ASM: above. We must find the cfa
of (;CODE) that DOES>ASM: compiled into our word and retrieve the machine code that follows
it. Refer to the example in § 9.10 (which we've renamed here as CONST2 to avoid confusion) for
the following:

5. Use ' and CFA to find the cfa of (;CODE) so you can find the cell within the definition of
CONST2 that contains it:

HEX ' (;CODE) CFA U.

will display this on the screen:
7254 ok:0

6. Use ' to find the pfa of CONST2 and dump from the pfa to the end of the word:
HERE ' CONST2 SWAP OVER - DUMP

will dump this to the screen:
AE4A: 71CC 6616 7254 0649 q.f.rT.I

9 The fbForth 2.0 TMS9900 Assembler 95

AE52: C65A 045F .Z._
ok:0

The column at the left indicates the addresses in RAM where the hexadecimal cells to the
right are located. The 8-character, right-hand column is their ASCII representation.

7. The last cell should be 045Fh, corresponding to the ;ASM instruction.

8. Write the high-level part of the word through DOES>ASM: , replacing DOES>ASM: with
DOES>CODE: , followed by the machine code after 7254h [the cfa of (;CODE) we found
above in (5)]. Use the dump above for guidance to place the hexadecimal value for each
cell as follows, replacing 045Fh with ;CODE :

HEX
: CONSTANT <BUILDS , DOES>CODE: 0649 C65A ;CODE

which can now be entered on an fbForth 2.0 screen to be loaded with only DOES>CODE:
and ;CODE and without the Assembler overhead.

9. If all the code was assembly code, as it is here, you’re done. Otherwise, you need to
replace values that can vary from one load to the next, such as variables, named constants
and dictionary entries not part of the resident dictionary, with the high-level code used in
the word’s assembly language definition. See (8) in § 9.11.1 for an example with a
named constant.

10. You should test your new version of the word to verify it is identical to the original
assembly version.

96 10 Interrupt Service Routines (ISRs)

10 Interrupt Service Routines (ISRs)
As of fbForth 2.0:8, the fbForth 2.0 ISR is enabled by default so that it may process the new
fbForth 2.0 speech and sound routines. Though the fbForth 2.0 ISR may be disabled by the
user as it used to be by default, doing so will disable the new speech and sound routines.

The method of servicing a user’s ISR written in Forth is basically the same as in past builds of
fbForth 2.0.

 10.1 Overview of fbForth 2.0’s ISR

Though the user may disable it20, fbForth 2.0’s ISR is now hooked at startup and is executed for
every interrupt. There are three entry points into fbForth 2.0’s ISR. Their ALC (Assembly
Language Code) labels are INT1, INT2 and INT3.

INT1 is where the console ISR branches at the end of its interrupt processing. It processes any
pending speech (started with SAY or STREAM) and sound (started with PLAY). It then looks to
see whether a user ISR is installed in user variable ISR . If so, it modifies the fbForth 2.0 inner
interpreter’s NEXT (R15) to re-enter at INT2.

Re-entry at INT2 will restore NEXT and set up re-entry yet again at INT3 for cleanup just before
branching to the user ISR.

When the user ISR finishes, fbForth 2.0’s ISR is re-entered at INT3 for cleanup via the inner
interpreter. Upon exit, the inner interpreter will resume processing Forth words where it was
interrupted.

A user ISR will be executed only if the user has installed an ISR using the steps detailed in § 10.3
“Installing a User ISR”.

 10.2 A Detailed Look at fbForth 2.0’s ISR

The console ISR branches to the contents of 83C4h (R2 of the console ISR workspace [83C0h]) if
it is non-zero. As of fbForth 2.0:8, 83C4h contains the address of ISR entry point INT1
(currently, 3020h) mentioned in the last section. This same entry point is in user variable
INTLNK , as well. This means that the console ISR will branch to the fbForth 2.0 ISR with
BL *R12 through the GPL workspace (83E0h), R12 containing the ISR’s entry point.

Upon entry at INT1 from the console ISR, the fbForth 2.0 ISR does the following:

• Checks for pending speech and sound. If found, the following ISR branch stack is set up
and executed:

◦ Relevant speech ISR address, if speech pending;

◦ Sound list #1 ISR address, if pending;

◦ Sound list #2 ISR address, if pending;

◦ fbForth 2.0 ISR return address.

• Restores interrupted bank.

20 fbForth 2.0’s ISR may be disabled by zeroing 83C4h with HEX 0 83C4 ! .

10 Interrupt Service Routines (ISRs) 97

• Checks user variable ISR for a non-zero value, implying a user ISR is installed. If a user
ISR is defined, modifies NEXT to re-enter fbForth 2.0’s ISR at INT2 at the next branch
through NEXT via B *NEXT or B *R15, which will set up to execute the user ISR.

• Exits the fbForth 2.0 ISR by changing to the ISR workspace (83C0h) and returning to
the caller of the console ISR.

Upon entry at INT2 (because we have a user ISR defined), the fbForth 2.0 ISR does the
following:

• Disables interrupts via LIMI 0.

• Disables VDP interrupt.

• Restores NEXT to its value before it was changed at INT1.

• Sets the fbForth “pending interrupt” flag.

• Pushes current IP (next word pointer) to the return stack.

• Changes IP to INT3 for cleanup re-entry to fbForth 2.0 ISR.

• Copies the value in ISR to W (current word pointer) so inner interpreter will execute the
user ISR.

• Branches to inner interpreter to execute user ISR via DOEXEC.

Upon entry at INT3 (because we are returning from executing the user ISR), the fbForth 2.0 ISR
does the following:

• The inner interpreter actually branches to the address 4 bytes after INT3, which pops the
saved IP from the return stack.

• Clears the fbForth “pending interrupt” flag.

• Clears the pending VDP interrupt by reading VDP status.

• Re-enables VDP interrupt.

• Re-enables interrupts via LIMI 2.

• Branches to inner interpreter via NEXT to continue executing the interrupted list of word
addresses.

If the user’s ISR (see below) is properly installed, fbForth 2.0’s ISR, at interrupt, modifies NEXT
so that the very next time B *NEXT or B *R15 is executed from fbForth 2.0’s workspace,
fbForth 2.0’s ISR is re-entered to disable interrupts and to insert execution of the user ISR and
its cleanup into the fbForth 2.0 inner interpreter’s list of execution addresses (cfas).

The TI-99/4A has the built-in ability to execute an interrupt routine every 1/60 second. This
facility has been extended by the fbForth 2.0 system so that the routine to be executed at each
interrupt period may be written in Forth rather than in assembly language. This is an advanced
programming concept and its use depends on the user’s knowledge of the TI-99/4A.

 10.3 Installing a User ISR

The user variables ISR and INTLNK are provided to assist the user in using ISRs. Initially,
INTLNK contains the address of the fbForth 2.0 ISR handler and ISR is set to 0 to indicate no
user ISR. To correctly use user variable ISR , the following steps should be followed:

98 10.3 Installing a User ISR

Step Forth Code

1) Create and test an fbForth 2.0 routine to perform the
function. Let’s call it MYISR : : MYISR … ;

2) Clear the fbForth 2.0 ISR hook to temporarily disable it: HEX 0 83C4 !

3) Determine the Code Field Address (cfa) of the routine in
(1): ' MYISR CFA

4) Write the cfa from (3) (still on the stack) into user variable
ISR : ISR !

5) Write the contents of INTLNK into 83C4h (33732) to re-
enable the fbForth 2.0 ISR: HEX INTLNK @ 83C4 !

The ISR linkage mechanism is designed so that your interrupt service routine will be allowed to
execute immediately after each time the fbForth 2.0 system executes the instruction whose
address is in NEXT (as it does at the end of each code word). In addition, the KEY routine has been
coded so that it also executes through NEXT after every keyscan whether or not a key has been
pressed. The execution of the “NEXT” instruction in the inner interpreter is actually coded in TI
Assembler as B *NEXT or B *R15 because fbForth 2.0 workspace register 15 (R15 or NEXT)
always contains the address of “NEXT” (MOV *IP+,W) except, of course, when we temporarily
force its change by installing a user ISR. This executes the same procedure as the fbForth 2.0
Assembler words ;ASM and NEXT, (see Chapter 9“The fbForth 2.0 TMS9900 Assembler”).

Before installing an ISR, you should have some idea of how long it takes to execute, keeping in
mind that for normal behavior it should execute in less than 16 milliseconds. ISRs that take
longer than that may cause erratic sprite motion, speech and sound because of missed interrupts.
In addition it is possible to bring the fbForth 2.0 system to a slow crawl by using about 99% of
the processor’s time for the ISR.

The ISR capability has obvious applications in game software as well as for playing background
music or for spooling blocks from file to printer while other activities are taking place. This final
application will require that file buffers and user variables for the spool task be separate from the
main Forth task or a very undesirable cross-fertilization of buffers may result. In addition it
should be mentioned that disk activity causes all interrupt service activity to halt.

ISRs in fbForth 2.0 can be written as either colon definitions or as ASM: definitions. The former
permits very easy routine creation, and the latter permits the same speed capabilities as routines
created by the Editor/Assembler. Both types can be used in a single routine to gain the
advantages of both.

 10.4 Example of a User ISR: DEMO

An example of a simple ISR is given below. This example also illustrates some of the problems
associated with ISRs and how they can be circumvented. The problems are:

1) A contention for PAD between a normal Forth command and the ISR routine.

2) Long execution time for the ISR routine. (Even simple routines, especially if they
include output conversion routines or other words that nest Forth routines very deeply,
will not complete execution in 1/60 second.)

10 Interrupt Service Routines (ISRs) 99

The problem listed in (1) is overcome by moving PAD in the interrupt routine to eliminate the
interference between the foreground and the background task. An example of problem (2) would
be attempting to use the built-in number formatting routines, which are quite general and hence
pay a performance penalty. DEMO performs this conversion rather crudely, but fast enough that
there is adequate time remaining in each 1/60 second to do meaningful computing.

0 VARIABLE TIMER (TIMER will hold the current count)
: UP 100 ALLOT ; (move HERE and thus PAD up 100 bytes)
: DOWN -100 ALLOT DROP ; (restore PAD to its original location)
: DEMO UP (move PAD to avoid conflict)
 1 TIMER +! TIMER @ (increment TIMER , leave on stack)
 PAD DUP 5 + (ready to loop from PAD + 5 down to PAD + 1)
 DO

 0 10 U/ (make positive double, get 1st digit)
 SWAP 48 + (generate ASCII digit)
 I C! (store to PAD)
 -1 +LOOP (decrement loop counter)
 PAD 1+ SCRN_START @ 5 VMBW (write to screen)
 DOWN ; (restore PAD location)

 10.4.1 Installing the DEMO ISR

To install this ISR, the following code should be executed:

HEX 0 83C4 ! (clear console ISR hook)
' DEMO CFA (get cfa of the word to be installed as user ISR)
ISR ! (place it in user variable ISR)
INTLNK @ (get the fbForth 2.0 ISR address to the stack)
HEX 83C4 ! (re-install fbForth 2.0 ISR into console ISR hook)

(Note: the cfa of DEMO must be in user variable ISR
before writing to 83C4h)

 10.4.2 Uninstalling the DEMO ISR

To reverse the installation of the ISR, the following code should be executed:

HEX 0 83C4 ! (clear console ISR hook)
0 ISR ! (disable user ISR by zeroing user variable ISR)
INTLNK @ (get the fbForth 2.0 ISR address to the stack)
HEX 83C4 ! (re-install fbForth 2.0 ISR into console ISR hook)

100 10.5 Some Additional Thoughts Concerning the Use of ISRs

 10.5 Some Additional Thoughts Concerning the Use of ISRs

ISRs are uninterruptible. Interrupts are disabled by the code that branches to your ISR routine
and they are not enabled until just before branching back to the foreground routine. Do not
enable interrupts in your interrupt routine.

1) Caution must be exercised when using PABs, changing user variables or using disk
buffers in an ISR, as these activities will likely interfere with the foreground task unless
duplicate copies are used in the two processes.

2) An ISR must never expect nor leave anything on the stacks. It may however use them in
the normal manner during execution.

3) Disk activity disables interrupts as do most of the other DSRs in the TI-99/4A. An ISR
that is installed will not execute during the time interval in which disk data transfer is
active. It will resume after the disk is finished. Note that it is possible to LOAD from disk
while the ISR is active. It will wait for about a second each time the disk is accessed.
The dictionary will grow with the resultant movement of PAD without difficulty.

11 Potpourri 101

11 Potpourri
Your fbForth 2.0 system has a number of additional features that will be discussed in this
chapter. These include a facility to save and load binary images of the dictionary so that
applications need not be recompiled each time they are used, a group of CRU (Communications
Register Unit) instructions and some additional words that make the stack easier to manipulate.

 11.1 BSAVE and BLOAD

BSAVE (addr blk1 --- blk2)

The word BSAVE is used to save binary images of the dictionary. It has been made part of
the resident dictionary in fbForth 2.0, so you no longer need to load it from FBLOCKS.
BSAVE requires two entries on the stack:

1) The lowest memory address addr in the dictionary image to be saved to disk.

2) The Forth block number blk1 to which the saved image will be written.

BSAVE will use as many fbForth 2.0 blocks as necessary to save the dictionary contents
from the address given on the stack to HERE. These are saved with 1000 bytes per
fbForth 2.0 block until the entire image is saved. BSAVE returns on the stack the number
blk2 of the first available Forth block after the image.

Each Forth block of the saved image has the following format:

Byte # Contents
0‒1 Address at which the first image byte of this Forth block

will be placed
2‒3 DP for this memory image
4‒5 Contents of CURRENT
6‒7 Contents of CURRENT @
8‒9 Contents of CONTEXT
10‒11 Contents of CONTEXT @
12‒13 Contents of VOC-LINK
14–15 Pointer to last word defined in Forth vocabulary
16–17 Pointer to last word defined in Assembler vocabulary
18 The letter ‘t’
19 The letter ‘i’
20‒23 Not used
24‒1023 Up to 1000 bytes of the memory image

102 11.1 BSAVE and BLOAD

BLOAD (blk --- flag)

BLOAD is part of your fbForth 2.0 kernel and does not have to be loaded before you can
use it. It reverses the BSAVE process and makes it possible to bring in an entire
application in seconds. BLOAD expects an fbForth 2.0 block number blk on the stack.
Before performing the BLOAD function the 18th and 19th bytes are checked to see that they
contain the letters “ti”. If they do, the load proceeds and BLOAD returns a flag of 0 on the
stack signifying a successful load. If the letters “ti” are not found, then the BLOAD is not
performed and a flag of 1 is returned. This facility permits a conditional binary load to be
performed and if it fails (wrong disk, etc.), other actions can be performed.

Because the BLOAD / BSAVE facility is designed to start the save (and hence the load) at a user-
supplied address, a complete overlay structure can be implemented. Very important: The user
must ensure that, when part of the dictionary is brought in, the remainder of the dictionary (older
part) is identical to that which existed when the image was saved.

 11.1.1 Using BSAVE to Customize How fbForth 2.0 Boots Up

You may find that you use the same MENU choices frequently and would like to load them
automatically and quickly each time you boot fbForth 2.0. You can do this by using the Forth
word TASK as a reference point for BSAVE . A no-operation word or null definition, TASK is the
last word defined in the resident Forth vocabulary of fbForth 2.0 and the last word that cannot
be forgotten using FORGET . Its definition is simply

: TASK ;

Its address can be used to BSAVE a personalized fbForth 2.0 system disk by using ' TASK as the
address on the stack for BSAVE . If part of your personalized system includes the 64-column
editor, you can use the 37 empty blocks of FBLOCKS, starting with block 27, to save your
system image:

' TASK 27 BSAVE .

(Be sure to back up the original FBLOCKS file before trying this!). It is important that you
ensure that this procedure does not compromise fbForth 2.0 system blocks you may need for
your new personalized system. The . after BSAVE will report the next available block from the
value left on the stack. Subtracting the starting block number (27, in this case) from that number
will tell you how many blocks it took to save the binary image in the above BSAVE line.

You now need to add the code to block 1 to load what you have just saved the next time you boot
your system. You currently have lines 5 – 15 to add your code as long as it eventually ends with
27 BLOAD for the above case. You also must remove (or put at the end of your added code) the
;S at the end of line 4 because ;S exits loading and interpreting the block. This will load your
BSAVEd system and it will happen a lot faster than loading the text blocks because they now don't
need to be interpreted.

 11.1.2 An Overlay System with BSAVE and BLOAD

As mentioned above, you can implement a complete overlay structure using BSAVE and BLOAD .
It can be a bit tedious to set up, however, because you must ensure that the dictionary structure
older than what you load with BLOAD is identical to what it was when the binary image was saved
with BSAVE . If your application always uses TASK as the reference point, as in the previous

11 Potpourri 103

section, for saving and loading all overlays you set up for your application, the situation is
actually pretty simple. If, on the other hand, you wish to have the most efficiently running
application possible with minimum load/reload times, you will want to load as overlays only
those parts of your application that can be considered mutually exclusive or, at least, not
redundant functions.

Such an application might be set up as follows:

1. Anticipate blocks where overlays will be saved with BSAVE .

2. Set up storage (variables, arrays, ...) that is common to two or more overlays.

3. Set up the overlay-loading mechanism in your application to use BLOAD to load them.
The following example illustrates such a mechanism using the CASE … ENDCASE
construct:

0 VARIABLE OVLY \ track current ovly#

: OVLY_LD (ovly# ---)

DUP
CASE

1 OF 120 BLOAD ENDOF
2 OF 130 BLOAD ENDOF

3 OF 140 BLOAD ENDOF
ELSEOF -1 ENDOF \ wrong overlay choice!

 ENDCASE

\ 2 cells to here. Top cell: -1|0|1
CASE

-1 OF ." No choice for overlay " . CR ENDOF
 0 OF OVLY ! ENDOF \ Success! Save new #

 1 OF ." Failed to load overlay " . CR ENDOF
ENDCASE ;

4. Program a method for determining which overlay is needed for a particular function or
set of functions and use OVLY to determine whether that overlay needs to be loaded.

5. As the last word of your application before any overlays, define OVERLAYS as a null
definition to be a reference point for BSAVE and make it unforgettable:

: OVERLAYS ;

' OVERLAYS NFA FENCE !

6. Begin each overlay with the following null definition as a FORGET reference point for
loading the next overlay source block prior to saving its binary image with BSAVE :

: OVLY_STRT ;

7. After the successful load (with BLOAD) of an overlay, set OVLY to its number as in the
example in (3) above.

After programming and debugging the application, save the application and its overlays as
follows:

 1. Remove all system components from the dictionary that are not required by your
application and that are newer than TASK . To start with a dictionary with only resident
words:

104 11.1 BSAVE and BLOAD

 a) Execute VLIST to get the name of the word immediately following TASK .
Remember that VLIST lists the dictionary from HERE back to older words.

 b) FORGET that word to leave only the resident dictionary. If the word following TASK ,
i.e., listed just before TASK by VLIST , is XXX , then execute FORGET XXX .

 2. Load all system components required to run your application.

 3. Load application.

 4. Load first overlay.

 5. BSAVE application using the address of TASK to a free Forth block:

' TASK 30 BSAVE .

 6. BSAVE first overlay using the address of OVERLAYS to a free Forth block:

' OVERLAYS 40 BSAVE .

 7. For each overlay following the first do the following:

 a) FORGET OVLY_STRT

 b) 100 LOAD (100 should be where the Forth block for next overlay resides.)

 c) ' OVERLAYS 50 BSAVE . (Obviously, 50 should be a different block for each
additional overlay.)

 11.1.3 An Easier Overlay System in Source Code

The above BSAVE / BLOAD method for setting up an overlay system can be very difficult to
maintain because of the unforgiving nature of BLOAD . Any changes in the application other than
the overlay section will almost certainly necessitate re-saving all of the overlays. An easier
method to maintain is one such as described in Starting FORTH (1st Ed.), p. 80ff. It will be
necessarily slower to load overlays because it involves interpreting source blocks. You can still
save a binary image of the application as above with the first, presumably most used, overlay to
minimize load time, but it still may be better for software changes to BSAVE the application
without an overlay.

Because you are not using BSAVE to save the overlays, you can dispense with one of the null
definitions. Let us say you are using OVERLAYS , as the word to FORGET each time another
overlay is loaded. OVERLAYS will now separate the main application from the current overlay
and should, of course, be the last word of the main application. OVERLAYS should obviously not
be made unforgettable! The first fbForth 2.0 block of each overlay should begin with

FORGET OVERLAYS : OVERLAYS ;

You can use the same mechanism (OVLY_LD) as in the previous section for loading the overlays,
but you will need to change all instances of BLOAD to LOAD and, of course, the blocks will be text
blocks, not binary images. You will also need to change the code that expects a flag on the stack
from BLOAD because LOAD does not leave a flag.

11 Potpourri 105

 11.2 Conditional Loads

CLOAD (blk ---)

The word CLOAD has been included in your system to assist in easily managing the
process of loading the proper support routines for an application without compiling
duplicates of support routines into the dictionary.

CLOAD calls the words <CLOAD> , WLITERAL , and SLIT . Their functions are described
briefly as follows:

<CLOAD> (---)

performs the primary CLOAD function and is executed or compiled by CLOAD depending
on STATE .

SLIT (--- addr)

is a word designed to handle string literals during execution. Its purpose is to put the
address of the string on the stack and step the fbForth 2.0 Instruction Pointer over it.

WLITERAL (---)

is used to compile SLIT and the desired character string into the current dictionary
definition. See the fbForth 2.0 Glossary (Appendix D) for more detail.

To use CLOAD , there must always be a Forth block number on the stack. The word CLOAD must
be followed by the word whose conditional presence in the dictionary will determine whether or
not the Forth block number on the stack is loaded.

27 CLOAD FOO

This instruction, for example, will load fbForth 2.0 block 27 only if a dictionary search via
(FIND) fails to find FOO . FOO should be the last word loaded by the command 27 LOAD to
insure all the code dependencies were loaded.

It is also possible to use CLOAD to abort the loading of the currently loading fbForth 2.0 block.
This is done by using the command:

0 CLOAD TESTWORD

If this line of code were located on fbForth 2.0 block 50, and the word TESTWORD were in the
present dictionary, the load would abort just as if a ;S had been encountered.

Caution must be exercised when using BASE->R and R->BASE with CLOAD as these will cause
the return stack to be polluted if a LOAD is aborted and the BASE->R is not balanced by an
R->BASE at execution time.

106 11.3 CRU Words

 11.3 CRU Words

The five words below have been included to assist in performing CRU (Communications Register
Unit) related functions. They allow the fbForth 2.0 programmer to perform the LDCR, STCR, TB,
SBO and SBZ operations of the TMS9900 without using the Assembler. See CRU documentation
in the Editor/Assembler Manual for more information. These words are not part of the resident
dictionary. They must be loaded from block 5 of FBLOCKS (01SEP2014 or later). You can
always type MENU to view the loadable options for fbForth 2.0.

Please note that the CRU base address used here is the CRU bit number, not the “CRU Address”
in § 24.3.3 “CRU Allocation” of the Editor/Assembler Manual. Each of the instructions below
doubles the CRU bit number addr before putting it in R12. If you are accustomed to using the
already-shifted CRU base address for a device, you will need to shift it right 1 bit (divide by 2)
for addr in all of these words such that it is the actual CRU base bit number. For TB , SBO and
SBZ , you will need to compose the CRU bit number from the base + the bit to be tested, set or
reset because each of these words operates on bit 0 of the address (addr) passed to it, i.e., they do
not operate like their namesakes in TMS9900 Assembler. In the author’s opinion, these words
should emulate the behavior of their TMS9900 Assembler counterparts, but rather than break old
TI Forth code by changing their definitions, the author offers the following comparison of
fbForth 2.0 code and TMS9900 Assembler code for the same operation:

Scenario: You wish to set CRU bit 9 of the disk controller’s CRU address space,
1100h – 11FEh (CRU bits 880h – 8FFh).

TMS9900 Assembler: Load R12 with 1100h followed by SBO 9:
LI R12,>1100
SBO 9

fbForth 2.0: Convert the CRU base address (1100h) to the CRU bit number (880h) it
represents, add the bit number (9) to be set and push the result to the stack before
executing SBO :

HEX 889 SBO ok:0

which actually executes the following TMS9900 Assembler code:

MOV *SP+,R12 <--pop 889h from the stack to R12
A R12,R12 <--double the CRU bit number
SBO 0 <--set the bit pointed to by R12

LDCR (n1 n2 addr ---)

Performs a TMS9900 LDCR instruction. The CRU base address addr will be shifted
left one bit and stored in workspace register R12 prior to executing the TMS9900
LDCR instruction. The low-order n2 bits of value n1 are transferred to the CRU, where
the following condition, n2 ≤ 15, is enforced by n2 AND 0Fh. If n2 = 0, 16 bits are
transferred. For program clarity, you may certainly use n2 = 16 to transfer 16 bits
because n2 = 0 will be the value actually used by the final machine code.

STCR (n1 addr --- n2)

Performs the TMS9900 STCR instruction. The CRU base address addr will be shifted
left one bit and stored in workspace register R12 prior to executing the TMS9900
STCR instruction. There will be n1 bits transferred from the CRU to the stack as n2,
where the following condition, n1 ≤ 15, is enforced by n1 AND 0Fh. If n1 = 0, 16 bits

11 Potpourri 107

will be transferred. For program clarity, you may certainly use n1 = 16 to transfer 16
bits because n1 = 0 will be the value actually used by the final machine code.

TB (addr --- flag)

TB performs the TMS9900 TB instruction. The bit at CRU address addr is tested by
this instruction. Its value (flag = 1|0) is returned to the stack. The CRU base
address addr will be shifted left one bit and stored in workspace register R12 prior to
executing the TMS9900 instruction, TB 0, to effect testing the bit.

SBO (addr ---)

This word expects to find on the stack the CRU address addr of the bit to be set to 1.
SBO will put this address into workspace register R12, shift it left (double it) and
execute TMS9900 instruction, SBO 0, to effect setting the bit.

SBZ (addr ---)

This word expects to find on the stack the CRU address addr of the bit to be reset to
0. SBZ will put this address into workspace register R12, shift it left (double it) and
execute TMS9900 instruction, SBZ 0, to effect resetting the bit.

 11.4 Useful Additional Stack Words

The words in this section were, for the most part, required by the new Stack-based String Library
(see Chapter 14). The author added a few complementary words to round out the set. They are
loaded from block 41 of FBLOCKS (21NOV2014 or later).

2DUP (n1 n2 --- n1 n2 n1 n2)

Duplicate the top two numbers on the stack.

2DROP (n1 n2 ---)

Drop the top two numbers from the stack.

NIP (n1 n2 --- n2)

Remove from the stack the number that is under the top number.

TUCK (n1 n2 --- n2 n1 n2)

Put a copy of the top number under the top two numbers on the stack.

CELLS (n --- 2n)

Replace n (a number of cells) with 2n (the number of bytes in n cells).

-ROT (n1 n2 n3 --- n3 n1 n2)

Rotate right the top three numbers on the stack, resulting in the top number on the
bottom.

PICK (+n --- [n])

Copy to the top of the stack the nth number down. The 0th number is the top number.
[n] means “the contents of cell n from the top of the stack”. The number n must be
positive.

0 PICK is equivalent to DUP .
1 PICK is equivalent to OVER .

108 11.4 Useful Additional Stack Words

ROLL ([n] … [0] +n --- [n-1] … [0] [n])

Rotate left the top n+1 numbers on the stack, resulting in the nth number down
moving to the top of the stack. The number n must be positive. The source for ROLL
was Marshall Linker via George Smyth’s “Forth Forum” column in the MANNERS
Newsletter (1985) Vol. 4(5), pp. 12 – 16.

0 ROLL is a null operation.
1 ROLL is equivalent to SWAP .
2 ROLL is equivalent to ROT .

WITHIN (n1 n2 n3 --- flag)

Result flag is true (1) if n2 ≤ n1 < n3 and false (0) otherwise.

<> (n1 n2 --- flag)

Result flag is true (1) if n1 ≠ n2 and false (0) otherwise.

$. (n ---)

Display the top number on the stack as an unsigned hexadecimal number.

EXIT (---) [immediate word]

EXIT is a synonym for ;S , which stops interpretation of a Forth block or ends the
current word’s execution and returns to the calling procedure.

12 fbForth 2.0 Dictionary Entry Structure 109

12 fbForth 2.0 Dictionary Entry Structure
The structure of an entry (a Forth word) in the fbForth 2.0 dictionary is briefly described in this
chapter to give the reader a better understanding of fbForth 2.0 and how its dictionary may differ
from other Forth implementations.

The dictionary entries are shown here schematically as a stack of single cells of 16 bits each:

At the least, each entry contains a link field (1 cell), a name field (1 – 16 cells), a code field
(1 cell) and a parameter field (n ≥1 cells).

 12.1 Link Field

The link field is the first field in a definition. It contains the address of the name field of the
immediately preceding word in the vocabulary list to which the word belongs in the dictionary.
The address of this field is termed the link field address lfa and may be retrieved by pushing the
pfa (see § 12.4) onto the stack and executing LFA .

 12.2 Name Field

The name field follows the link field and may be as long as 16 cells (32 bytes). The name field
address nfa points to this field and may be retrieved by pushing the pfa (see § 12.4) onto the
stack and executing NFA .

The name field is a packed character string (see footnote 5 on page 22) in that the first byte is the
length byte followed by the character string that represents the name. The three highest bits of
the length byte are the beginning terminator bit (80h), the precedence bit (40h) and the smudge

 precedence bit terminator bits smudge bit

(previous entry)

link field address lfa link field

name field address nfa t p s len char1

name field ⁞
charlen-1 | charlen t charlen | space

code field address cfa code field

parameter field address pfa parameter field

⁞
end of definition

110 12.2 Name Field

bit (20h). These are shown in the above figure as t, p and s, respectively. That leaves 5 bits for
the character-length len of the name, which is the reason that fbForth 2.0 words have a
maximum length of 31 characters. The name field in fbForth 2.0 always occupies an even
number of bytes, i.e., it begins and ends on a cell boundary. The last byte of the name field will
be either the last character of the name or a space and will have the highest bit (80h) set as the
ending terminator bit.

To clarify the above diagram a bit, when the name is only one character long, the first character is
obviously the last character and the ending terminator bit will be set in that byte, which results in
a name field occupying just one cell.

The terminator bits are flags used by TRAVERSE (q.v.) to find the beginning or end of the name
field, given the address of one end and the direction (+1|-1) to search.

The precedence bit is used to indicate that a word should be executed rather than compiled during
compilation. It is set by IMMEDIATE , which sets the precedence bit for the most recently
completed definition.

The smudge bit is used to hide|unhide a word from a dictionary search during compilation. If the
smudge bit is set (20h), ' , -FIND and (FIND) will not find the word. During compilation, the
smudge bit is toggled by SMUDGE or similar code and toggled again by ; or similar termination
code.

 12.3 Code Field

The code field immediately follows the last cell of the name field. The code field address cfa
points to this field and may be retrieved by pushing the pfa (see § 12.4) onto the stack and
executing CFA . The code field contains the address of the machine-code routine that
fbForth 2.0 will run when it executes this word and depends on the nature of the word’s
definition. The following table shows common situations:

Word
Defined by

Code Field Contains
Address of What the Runtime Code Does

VARIABLE Runtime code of VARIABLE Pushes word’s pfa onto stack

CONSTANT Runtime code of CONSTANT Pushes contents of word’s pfa onto
stack

: Runtime code of : Executes the list of previously
defined words, the addresses of
which are stored beginning at this
word’s pfa

CODE: pfa of word Executes machine code stored
beginning at this word’s pfa

ASM: pfa of word Executes machine code stored
beginning at this word’s pfa

12 fbForth 2.0 Dictionary Entry Structure 111

 12.4 Parameter Field

The parameter field follows the code field. The parameter field address pfa points to this address,
which can be retrieved by using ' :

' cccc

where cccc is the name of the Forth word for which you desire the pfa.. If the word is not found,
however, you will get an error message. If the error occurred during a LOAD , two values will be
left on the stack that indicate the character offset and block number of the error, allowing you to
use WHERE to open the editor at the bad code. -FIND (q.v.) will also return the pfa along with the
length byte of the name field and true if the word is found in the dictionary or just false if it is not
found. It is used the same way as ' , but more work is required if all you want is the pfa, so it is
more suited to colon definitions:

-FIND cccc DROP DROP

If you know only the nfa, you can retrieve the pfa by executing PFA .

The contents of the parameter field depend on the type of word defined. The following table
shows common situations:

Word Defined by Parameter Field Contains

VARIABLE Value of variable

CONSTANT Value of constant

: Mostly a list of the addresses (usually their cfas) of
previously defined words that comprise this word’s
definition

CODE: Machine code comprising this word’s runtime code

ASM: Machine code comprising this word’s runtime code

 12.5 Notes on Resident Dictionary Words

The structure of a Forth word described above is strictly true only for words defined in CPU
RAM space. For words in the resident dictionary, the various fields are split into two ROM banks
in the 32 KiB cartridge, with the link and name fields in bank 2 and the code and parameter fields
in bank 0. There are three additional fields following the name field of each word in bank 2. The
first contains the cfa; the second, the pfa; the third, the address of the previous word’s pfa pointer.

The resident dictionary structure is only searchable in bank 2, where two linked lists reside. The
first is the normal link-field-to-name-field chain and the second is a pfa-pointer-pointer-to-pfa-
pointer chain, mentioned in the previous paragraph. The only way to find the nfa, given a pfa in
ROM, is for NFA to search the latter chain from the last ROM definition to the first until the pfa’s
pointer is found, back up three bytes to the last byte of the name field and traverse the name field
to its first byte. The address of that byte is the nfa.

To find the lfa, LFA first finds the nfa via NFA and then backs up two bytes, i.e., lfa = nfa – 2.

Finally, CFA finds the cfa from the pfa in the same way for both ROM and RAM: cfa = pfa – 2.

112 13 Screen Fonts and the Font Editor

13 Screen Fonts and the Font Editor
Words introduced in this chapter:

FONTED FNT SCRFNT USEFFL

 13.1 Screen Font Changes as of fbForth 2.0:8

The default Screen Font File with descenders for ASCII character values 0 – 127 (1024 bytes) is
no longer in ROM. Now, it is to be found in DSK1.FBFONT unless the default disk has been
changed at bootup. The boot DSK #, n, is saved as the 5th byte of the packed string for the default
blocks filename, “DSKn.FBLOCKS”, the 1st byte of which is the string length.

At powerup,

• SCRFNT is set to its new default value of -1;

• The default font is loaded from DSKn.FBFONT by FNT .

At non-powerup COLD , the font file, loaded before COLD was invoked, is reloaded, unless the
user changed the default value of SCRFNT to 0. The default value of SCRFNT can be changed to 0
to force loading the console font, with its small caps for lowercase, with the following code:

0 UCONS$ @ 68 + !

UCONS$ is the address of the default-value table of User Variables and 68 (44h) is SCRFNT ’s
position in the table.

If the default font file cannot be found,

• SCRFNT and its default value are set to 0;

• The console font, with small caps for lowercase, is loaded.

If SCRFNT ≠ 0, FNT loads the default font file, the PAB for which follows the fbForth 2.0 disk
buffer, DISK_BUF , in VRAM.

The user can change the default font to come from a binary font file of the user’s choosing with
USEFFL . USEFFL will set up the font-file PAB (immediately follows DISK_BUF in VRAM).
The default font filename will be copied to the font PAB in VRAM.

The fbForth 2.0 word FNT loads either the default font file (can be changed by user) or the
console font into the Pattern Descriptor Table (PDT) depending on the value of the user variable
SCRFNT . The default font is loaded from DSK1.FBFONT by FNT (or from DSKn.FBFONT if
key n is held down) at fbForth 2.0 startup because SCRFNT = -1 at startup. The fbForth 2.0
system default font contains the patterns for ASCII character codes 0 – 127. The font pattern for
each character is 8 bytes, which means that 1 KiB of pattern code is loaded into the PDT. This
font contains true lowercase characters with true descenders.

It should be noted that each time the VDP mode is changed (except for Graphics2 [bitmap]), the
current screen font is reloaded. The user can always change the value of SCRFNT to 0 to force
(re)loading the console screen font. Changing SCRFNT back to a non-zero value will switch font
loading to the currently stored font-file name, be it the system or user font file.

13 Screen Fonts and the Font Editor 113

 13.2 User Fonts

fbForth 2.0 allows users to load their own fonts instead of the default font from cartridge ROM
as long as a few rules are followed:

• The font file should not be larger than 2 KiB, i.e., it should not code for more than 256
characters. Attempting to load font files larger than 2 KiB will result in a file I/O error.

• The first character is assumed to code for ASCII 0 and must start at the first byte of the
file. TI Writer CHARA1-style font files will not work because the font code begins at
byte 6, not byte 0, of the file. The Font Editor (see next section) can be used to correct
the file’s pattern registration so that it will load properly.

• Font files larger than 1 KiB (ASCII 0 – 127) will cause a problem in SPLIT2 mode in
that characters 128 – 255 will appear in the top of the bitmap graphics part of the screen.
This can be corrected with the following code after SPLIT2 has been invoked:

PDT 1024 + 1024 0 VFILL

To install a user font file that will be loaded the next time FNT is executed, the word USEFFL
must be followed by the full pathname of the font file as in the following example:

USEFFL DSK1.MYFONT

Once USEFFL executes without an error, the user’s font file will be installed at the next execution
of FNT , unless SCRFNT = 0.

 13.3 Using the Font Editor

Typing FONTED opens the font editor with 2 KiB of the current font loaded from the PDT and
with the uppercase ‘A’ (ASCII 65) in the edit box. A full 2 KiB is always loaded into the edit
buffer from the PDT regardless of the actual size of the screen font loaded by the last execution of
FNT :

114 13.3 Using the Font Editor

Editing the font will not affect the current font because the working buffer is not the PDT.
Though all the menu keys are shown at the bottom of the screen, they are rather cryptic, so here is
a brief description:

Function Keystroke

<FCTN+4> Next character pattern

<FCTN+6> Previous pattern

<FCTN+S> Move edit cursor left

<FCTN+D> Move edit cursor right

<FCTN+X> Move edit cursor down

<FCTN+E> Move edit cursor up

<FCTN+5> Select character pattern 128 characters up/down

<CTRL+Q> Turn off all pixels of character pattern block

<FCTN+8> Turn on all pixels of character pattern block

<CTRL+C> Copy character pattern to clipboard

<CTRL+X> Cut character pattern to clipboard

<CTRL+V> Paste character pattern from clipboard

<SPACE> Toggle current character pattern pixel on/off

 Key Select any character key to edit its pattern

<CTRL+D> Load font file

<FCTN+3> Toggle 6-byte font pattern offset

<CTRL+W> Toggle output file size between 1 KiB (ASCII 1 – 127) and 2 KiB
(ASCII 0 – 255)

<CTRL+E> Save font in fbForth 2.0 format

<CTRL+P> Save font in TI Writer format

<FCTN-9> Exit font editor

To aid in editing, the current pattern is shown actual size in a 6x8-pixel, text-mode character box
and an 8x8-pixel, graphics-mode character box. The ASCII value of the current character is also
shown. The edit cursor is a white '+' and can be moved around with the arrow keys. The pixel
under the cursor can be toggled on/off with the space bar. You will see any changes appearing in
all three display boxes.

You can load TI-Writer-format font files and toggle the font offset with <FCTN+3> so the patterns
are properly registered for editing. Saving the font as an fbForth-2.0-style font will write the
font starting at the first byte of the file. Saving it as a TI-Writer-style font will write six bytes of
zeroes before writing the font to the file. The only other output variation is choosing whether to
save only patterns 0 – 127 (1 KiB file) or all patterns 0 – 255 (2 KiB file). The blue '+' character
marks which of these occurs with the next file save and is toggled with <CTRL+W>.

13 Screen Fonts and the Font Editor 115

 13.4 Modifying the 64-Column Editor’s Font

The 64-column editor does not use the normal screen fonts described above, so modifying it will
be a bit more of a challenge. The following graphic shows the complete character set, with the
true lowercase letters and the ‘@’ designed by the author, for bitmap mode:

This character set is used principally by the 64-column editor via the word SMASH defined in
block 13 of FBLOCKS. Designing the characters for a 37 matrix was quite a challenge. The
‘&’ should probably be re-designed.

To design your own 37 font, use a 48-pixel grid for each character. Each row of the character
pattern is one nybble of the pattern code, so each character is four bytes. You then need only
overwrite the character codes for the tiny character set in block 15, lines 3 – 9 of FBLOCKS.
Loading the following three blocks from a blocks file of your design, with contiguous block
numbers, would accomplish this. As with any modification of FBLOCKS, be sure you have a
backup copy before making any changes! [Note: The comment, (^0) (Shift+0), on line 5 below
is a substitute for ()) , a syntax error]:

BLOCK #10
 0 (DEFINITIONS FOR true lowercase TINY CHARACTERS) BASE->R HEX
 1 0EEE VARIABLE TCHAR DATA[EEEE
 2 0000 0000 () 0444 4404 (!) 0AA0 0000 (") 08AE AEA2 (#)
 3 04EC 46E4 ($) 0A24 448A (%) 06AC 4A86 (&) 0480 0000 (')
 4 0248 8842 (() 0842 2248 (^0) 04EE 4000 (*) 0044 E440 (+)
 5 0000 0048 (,) 0000 E000 (-) 0000 0004 (.) 0224 4488 (/)
 6 04AA EAA4 (0) 04C4 4444 (1) 04A2 488E (2) 0C22 C22C (3)
 7 02AA AE22 (4) 0E8C 222C (5) 0688 CAA4 (6) 0E22 4488 (7)
 8 04AA 4AA4 (8) 04AA 622C (9) 0004 0040 (:) 0004 0048 (;)
 9 0024 8420 (<) 000E 0E00 (=) 0084 2480 (>) 04A2 4404 (?)
 10 04AE AE86 (@) 04AA EAAA (A) 0CAA CAAC (B) 0688 8886 (C)
 11 0CAA AAAC (D) 0E88 C88E (E) 0E88 C888 (F) 04A8 8AA6 (G)
 12 0AAA EAAA (H) 0E44 444E (I) 0222 22A4 (J) 0AAC CAAA (K)
 13 0888 888E (L) 0AEE AAAA (M) 0AAE EEAA (N) 0EAA AAAE (O)
 14 0CAA C888 (P) 0EAA AAEC (Q) 0CAA CAAA (R) 0688 422C (S)
 15 -->

116 13.4 Modifying the 64-Column Editor’s Font

BLOCK #11
 0 (DEFINITIONS FOR true lowercase TINY CHARACTERS continued)
 1 0E44 4444 (T) 0AAA AAAE (U) 0AAA AA44 (V) 0AAA AEEA (W)
 2 0AA4 44AA (X) 0AAA E444 (Y) 0E24 488E (Z) 0644 4446 ([)
 3 0884 4422 (\) 0C44 444C (]) 044A A000 ($) 0000 000F (_)
 4 0420 0000 (`) 000E 2EAE (a) 088C AAAC (b) 0006 8886 (c)
 5 0226 AAA6 (d) 0004 AE86 (e) 0688 E888 (f) 0006 A62C (g)
 6 088C AAAA (h) 0404 4442 (i) 0202 22A4 (j) 088A ACAA (k)
 7 0444 4444 (l) 000A EEAA (m) 0008 EAAA (n) 0004 AAA4 (o)
 8 000C AC88 (p) 0006 A622 (q) 0008 E888 (r) 0006 842C (s)
 9 044E 4442 (t) 000A AAA6 (u) 000A AAA4 (v) 000A AEEA (w)
 10 000A A4AA (x) 000A A62C (y) 000E 248E (z) 0644 8446 ({)
 11 0444 0444 (|) 0C44 244C (}) 02E8 0000 (~) 0EEE EEEE (DEL)
 12]DATA DROP DROP R->BASE -->
 13
 14
 15

BLOCK #12
 0 (DEFINITIONS FOR true lowercase TINY CHARACTERS concluded)
 1 BASE->R DECIMAL
 2 : TCOPY TCHAR 15 BLOCK 192 + 194 MOVE UPDATE FLUSH ;
 3
 4 CR ." Make FBLOCKS current, execute TCOPY and FORGET TCHAR . If
 5 FBLOCKS is on DSK1:" CR CR
 6 ." USEBFL DSK1.FBLOCKS" CR
 7 ." TCOPY" CR
 8 ." FORGET TCHAR" CR CR R->BASE ;S
 9
 10
 11
 12
 13
 14
 15

After loading the above blocks, follow the directions on the screen. The instructions you will be
prompted to type are explained below:

USEBFL DSK1.FBLOCKS Make DSK1.FBLOCKS the current blocks file.

TCOPY
Copy new tiny-character patterns to correct
location in block 15 of DSK1.FBLOCKS.

FORGET TCHAR
Reclaim dictionary space used by TCHAR array
and TCOPY word.

14 The Stack-based String Library 117

14 The Stack-based String Library
This chapter describes the stack-based string library package ported by Mark Wills to fbForth
2.0 from code he wrote for his own TurboForth 1.2 (see his website: turboforth.net). The
string library simplifies string handling through the use of a string stack. To accommodate users
of the string library in fbForth 2.0 and with permission, the author has freely edited Mark’s
documentation written 2/27/2014 for TurboForth 1.2 (cf. his website) for this chapter. In
addition, the author rendered some minor assistance in this fbForth-2.0 port.

[Mark Wills’ Note for his PDF documentation: This paper is adapted from a paper that I wrote describing
a string library that I developed for ANS Forth systems. The code21 presented at the end of this paper has
been modified where appropriate for compatibility with the Forth-8322 standard, and, specifically,
TurboForth V1.2. The original ANS paper can be downloaded as a PDF:

turboforth.net/downloads/docs/ANS_String_Lib.pdf.]

Mark Wills’ abstract for TurboForth 1.2:

String handling is not one of Forth’s strong points. Out-of-the-box support for strings is all
but non-existent in standard Forth. Whilst the concept of strings does exist in the language,
relatively few words are provided to allow effective string manipulation. The normal
approach for Forth programmers is to roll one’s own string functions as required. Issues such
as heap allocation and de-allocation, and memory fragmentation are thorny issues which are
often passed over in preference for a ‘quick-and-dirty’ solution that solves the problem at
hand. This paper presents a Forth-8322 Forth compliant library which affords the Forth
programmer such facilities as string constants, transient strings, and a wide range of string
manipulation words. Issues such as memory allocation, memory de-allocation and memory
fragmentation are rendered irrelevant through the provision of a string stack, which is used to
host and manipulate transient strings.

 14.1 Introduction—The Concepts behind the Library

The String Library offers two types of strings:

• Transient strings—these exist on a string stack, which is separate from the data and return
stacks. Their size is variable, and may be increased and decreased in size as necessary.

• String constants—declared with a maximum size, string constants are generally
initialized to a constant string value throughout the life of the application. It is possible
to change the string assigned to a string constant, but its maximum size cannot be
changed.

 14.1.1 Coding Conventions

The following coding-style conventions are employed in the library:

21 The code for the fbForth 2.0 version of the String Stack Library is located in Appendix J starting at block 42.

22 fbForth 2.0 is not Forth-83 compliant. It is based on fig-Forth , with some features of Forth-79 thrown in, both of
which predate the Forth-83 standard. Most of the modifications necessary to port the string library to fbForth 2.0
were due to this disparity.

118 14.1 Introduction—The Concepts behind the Library

• Words intended to be called by a user of the library all end with a dollar sign. The dollar
sign should be read as the word “string”. For example, DROP$ would be pronounced
“drop string”.

• Low-level words internal to the library for housekeeping, or general factors of code are
surrounded with parentheses. For example: (lenOf$) .

 14.1.2 Stack Notation

Normal Forth stack notation conventions are used. Where words have an effect on the string
stack, the string stack effects are shown alongside the normal data stack effects. For example,

VAL$ (--- ud) (SS: str ---)

The above example indicates that the word VAL$ takes a string from the string stack and results in
an unsigned double being pushed to the data stack.

The suggested pronunciation of the word is also given in quotes following the stack signature(s).

If a word expects additional characters from the input stream (the terminal input buffer or a block
buffer), “IS:” is shown on the “before execution” side of the stack effects followed by a descriptor
in italics and, possibly, a terminator (usually a double quote) in the font used for Forth words in
this document.

For example,

$CONST (max_len IS:name" ---)

 14.1.3 Loading the String Stack Library

The String Stack Library is supplied in the FBLOCKS file, ready to LOAD . Typing MENU will
provide you with instructions for LOADing the library. Currently, it is LOADed by typing 42
LOAD .

The string stack must be initialized to some convenient size by executing INIT$ once the library
is LOADed:

512 INIT$ ok:023

will initialize the string stack to 512 bytes. INIT$ should only be executed once because
initializing the string stack a second time will orphan the previous instance and waste memory.

 14.2 String Constant Words

Since only a handful of words are associated with string constants, they will be documented first:

$CONST (max_len IS:name ---) Runtime: (--- $Caddr) “string constant”

The word $CONST declares a string constant. Declared at compile time, string constants
require a maximum length and a name. For example,

50 $CONST WELCOME ok:0

23 Note that computer responses are underlined as is the case here for ok:0 .

14 The Stack-based String Library 119

The above example declares a string with a maximum size of 50 characters. It shall be
referenced in code using the name WELCOME .

Note the runtime stack effect. It can be seen that at runtime, when the name of the string
is referenced, it shall push its address to the data stack. The label $Caddr indicates that it
is the address of a string constant. A string constant pushes the address of its maximum
length field which can be read with the word MAXLEN$.

MAXLEN$ ($Caddr --- max_len) “maximum length of string”

Given the address of a string constant on the data stack the word MAXLEN$ returns the
maximum allowed string length for that string constant. For example,

50 $CONST WELCOME ok:0
WELCOME MAXLEN$. 50 ok:0

The above code fragment shall display the value 50.

:=" ($Caddr IS:string" ---) “assign string constant”

Given the address of a string constant on the data stack, the word :=" initializes the
string constant with the string from the input stream. For example,

50 $CONST WELCOME ok:0
WELCOME :=" Hello and welcome!" ok:0

.$CONST ($Caddr ---) “display string constant”

Given the address of a string constant on the data stack the word .$CONST shall display
the string. For example,

50 $CONST WELCOME ok:0
WELCOME :=" Hello and welcome!" ok:0
WELCOME .$CONST CR
Hello and welcome! ok:0

CLEN$ ($Caddr --- len) “string constant length”

Given the address of a string constant on the data stack the word CLEN$ returns its actual
length on the data stack. For example,

50 $CONST WELCOME ok:0
WELCOME :=" Hello and welcome!" ok:0
WELCOME CLEN$. 18 ok:0

The above code displays 18—the length of the string WELCOME .

>$ ($Caddr ---) (SS: --- str) “to string stack”

Given the address of a string constant on the data stack the word >$ copies the contents
of the string to the string stack where it can be manipulated. For example,

50 $CONST WELCOME ok:0
WELCOME :=" Hello and welcome!" ok:0
WELCOME >$ ok:0

Note that the string stack has received a copy of the string contained within WELCOME .
The string WELCOME still exists as a string constant.

120 14.3 String Stack Words

 14.3 String Stack Words

The convention within this document is to refer to words that exist on the string stack as transient
strings. They are referred to as transient strings because they generally only exist for a short time
on the string stack. Strings are placed on the string stack (which is separate from the data and
returns stacks) and then manipulated in some way before being consumed. Memory allocation
and de-allocation is managed by virtue of the strings being on the stack in the same way that the
size of the data stack is managed by simply adding or removing values on the data stack.

$" (IS:string" ---) (SS: --- str) “string to string stack”

The word $" takes a string from the input stream and pushes it to the string stack. The
end of the string is indicated by a quotation mark. For example,

$" Hello, World!" ok:0

In this example the string “Hello, world!” is pushed directly to the string stack, thus
becoming the top item on the string stack.

Note that $" is a state-smart word. It can be used in both colon definitions and also
directly at the command line. The correct action will be taken in either case.

In order that the runtime actions of $" may be compiled into a definition if so desired, the
runtime action of this word is encapsulated within the word ($") . Therefore, if the
runtime behavior of this word is to be compiled into another word, one must compile the
word ($") .

DUP$ (---) (SS: str1 --- str1 str1) “duplicate string”

The word DUP$ duplicates the top item on the string stack. For example,

$" Hello, World!" DUP$ ok:0

The string stack now contains two copies of the string.

DROP$ (---) (SS: str ---) “drop string”

The word DROP$ removes the topmost string item from the string stack. For example,

$" Hello, World!" ok:0
$" How are you?" ok:0
DROP$ ok:0

At this point the string “Hello, World!” is the topmost string the string stack. “How are
you?” was pushed onto the string stack, but it was immediately dropped.

SWAP$ (---) (SS: str1 str2 --- str2 str1) “swap string”

The word SWAP$ swaps the topmost two strings on the string stack. For example,

$" Hello, World!" ok:0
$" How are you?" ok:0
SWAP$ ok:0

At this point, the string “Hello, World!” is the topmost string on the string stack.

14 The Stack-based String Library 121

NIP$ (---) (SS: str1 str2 --- str2) “nip string”

The word NIP$ removes the string underneath the topmost string from the string stack.
For example,

$" red" ok:0
$" blue" ok:0

At this point, “blue” is on the top of the string stack, with “red” underneath it.

NIP$

At this point, “red” has been removed from the string stack, leaving “blue” as the topmost
string.

OVER$ (---) (SS: str1 str2 --- str1 str2 str1) “over string”

The word OVER$ pushes a copy of the string str1 to the top of the string stack, above str2.
For example,

$" red" ok:0
$" green" ok:0
OVER$ ok:0

At this point, the string stack contains the following strings:

“red” (the topmost string)
“green”
“red”

ROT$ (---) (SS: str1 str2 str3 --- str2 str3 str1) “rotate strings”

The word ROT$ rotates the top three strings to the left. The third string down (prior to the
execution of ROT$) moves to the top of the string stack.

Note that, for ease of implementation, this routine copies (using PICK$) the strings to the
top of the string stack in their correct final order, then removes the 3 original strings
underneath. Consequently, it is possible to run out of string stack space. If this happens,
the condition will be correctly trapped in (set$SP) .

-ROT$ (---) (SS: str1 str2 str3 --- str3 str1 str2) “rotate strings”

The word –ROT$ rotates the top three strings to the right. The top string (prior to the
execution of –ROT$) moves to the third position. Note that, for ease of implementation,
this routine copies (using PICK$) the strings to the top of the string stack in their correct
final order, then removes the 3 original strings underneath. Consequently, it is possible to
run out of string stack space. If this happens, the condition will be correctly caught in
(set$SP) .

>$CONST ($Caddr ---) (SS: str ---) “to string constant”

The word >$CONST takes the topmost string from the string stack and moves it into the
string constant whose address is on the data stack. For example,

4 $CONST COLOR ok:0
$" red" COLOR >$CONST ok:0

122 14.3 String Stack Words

At this point, the string constant COLOR has the value “red”. To verify, display the string
using .$CONST as follows:

COLOR .$CONST red ok:0

+$ (---) (SS: str1 str2 – str1& str2) “concatenate strings”

The word +$ replaces the top two strings on the string stack with their concatenated
equivalent. For example,

$" red" $" blue" +$ ok:0

At this point, “red” and “blue” have been removed from the string stack. The topmost
string on the string stack has the value “redblue”. Note that the topmost string goes to the
right of the newly concatenated string.

LEN$ (--- len) (SS: ---) “length of string”

The word LEN$ returns the length of the topmost string on the string stack. For example,

$" Hello world!" len$. 12 ok:0

displays the value 12.

MID$ (start end ---) (SS: str1 --- str1 str2) “mid-string”

The word MID$ produces a sub-string on the string stack, consisting of the characters
from the topmost string starting at character start and ending at character end. For
example,

$" redgreenblue" 3 7 mid$ ok:0

At this point, the topmost two strings on the string stack are as follows:

“green” (the topmost item)
“redgreenblue”

Note, as indicated in the string stack signature, the original string (str1) is retained. Note
also that the first character in the string (the leftmost character) is character number 0.

LEFT$ (len ---) (SS: str1 --- str1 str2) “left of string”

The word LEFT$ pushes the leftmost len characters to the string stack as a new string.
The original string is retained. For example,

$" redgreenblue" 3 LEFT$ ok:0

The above causes the string “red” to be pushed to the string stack.

RIGHT$ (len ---) (SS: str1 --- str1 str2) “right of string”

The word RIGHT$ causes the rightmost len characters to be pushed to the string stack as a
new string. The original string is retained. For example,

$" redgreenblue" 4 RIGHT$ ok:0

The above causes the string “blue” to be pushed to the string stack.

14 The Stack-based String Library 123

FINDC$ (char --- pos|-1) (SS: ---) “find character in string”

The word FINDC$ returns the position of the first occurrence of the character char,
beginning at the left side of the topmost string, with the search proceeding towards the
right. If the character is not found, -1 is returned. For example,

$" redgreenblue" 98 FINDC$. 8 ok:0

Displays the value 8, as the character ‘b’ (ASCII 98) is found in the 8th character position
(where the first character is character 0).

FIND$ (start --- pos | -1) (SS: ---) “find string in string”

The word FIND$ searches the second string on the string stack, starting from position
start, for the first occurrence of the topmost string and pushes its starting position to the
data stack. As a convenience, to make subsequent searches for the same substring easier,
both strings are retained on the string stack. For example,

$" redgreenbluegreen" $" green" 0 FIND$. 3 ok:0

displays the value 3, as the substring is found at character position 3 (the leftmost
character being character 0). The strings “redgreenbluegreen” and “green” remain on the
stack. Thus, the second instance of “green” could be found if desired.

REPLACE$ (--- pos | -1) (SS: str1 str2 str3 --- str4 | [str1 str2]) “replace string”

The word REPLACE$ searches string str2 for the first occurrence of string str3. If it is
found, it is replaced with the string str1, the position of str3 within str2 is pushed to the
data stack, str1 and str3 are removed from the string stack and the new string str4 is left on
the string stack. For example,

If the search string str3 is not found, -1 is pushed to the data stack, str1 and str2 are left on
the string stack, ready for another search if desired.

.$ (---) (SS: str ---) “display string”

The word .$ pops the topmost string from the string stack and displays it. For example,

$" Hello, World!" .$ Hello, World! oK:0

124 14.3 String Stack Words

The above code displays the string “Hello, World!” on the output device.

REV$ (---) (SS: str1 --- str2) “reverse string”

The word REV$ replaces the topmost string on the string stack with its reversed
equivalent. For example,

$" green" REV$.$ neerg ok:0

The above displays “neerg”.

LTRIM$ (---) (SS: str1 --- str2) “trim left of string”

The word LTRIM$ removes leading spaces from the topmost string. For example,

$" hello!" LTRIM$.$ hello! ok:0

Displays “hello!” with the leading spaces removed.

RTRIM$ (---) (SS: str1 --- str2) “trim right of string”

The word RTRIM$ removes leading spaces from the topmost string. For example,

$" hello! " RTRIM$.$ hello! ok:0

Displays “hello!” with the trailing spaces removed.

TRIM$ (---) (SS: str1 --- str2) “trim string”

The word TRIM$ removes both leading and trailing spaces from the topmost string. For
example,

$" hello! " TRIM$.$ hello! ok:0

The above code removes leading and trailing spaces and displays the string.

UCASE$ (---) (SS: str1 --- str2) “convert to upper case”

The word UCASE$ converts all lower case characters in the topmost string to upper case.
For example,

$" hello world! 1234" UCASE$.$ HELLO WORLD! 1234 ok:0

The above displays “HELLO WORLD! 1234”

LCASE$ (---) (SS: str1 --- str2) “convert to lower case”

The word LCASE$ converts all upper case characters in the topmost string to lower case.
For example,

$" HELLO WORLD! 1234" LCASE$.$ hello world! 1234 ok:0

The above displays “hello world! 1234”.

CMP$ (--- -1|0|+1) (SS: str1 str2 --- str1 str2) “compare strings”

The word CMP$ performs a case-sensitive comparison of the topmost two strings on the
string stack and returns -1 if str1 < str2, 0 if str1 = str2 and +1 if str1 > str2. The strings are
retained. For example,

$" hello" $" HELLO" CMP$. 1 ok:0

14 The Stack-based String Library 125

Displays “1” since the first string is greater than the second (the comparison is case
sensitive).

$" hello" $" hello" CMP$. 0 ok:0

Displays “0” since the strings are identical.

$" hell" $" hello" CMP$. -1 ok:0

Displays “-1” since the first string is less than the second.

A case in-sensitive comparison can easily be built as follows:

: CMPCI$ (--- flag) (SS: str1 str2 --- str1 str2)
 OVER$ OVER$ UCASE$ SWAP$ UCASE$ CMP$ DROP$ DROP$; ok:0

The above code creates copies of str1 and str2 (using OVER$) then converts them both to
upper case. CMP$ then compares the strings placing the appropriate flag on the data
stack. Finally, the uppercase versions of str1 and str2 are removed from the string stack.
Thus, str1 and str2 are retained, unchanged.

PICK$ (index ---) (SS: --- str) “pick string”

Given the index of a string on the string stack, copy the indexed string to the top of the
string stack. 0 PICK$ is equivalent to DUP$, 1 PICK$ is equivalent to OVER$ etc. For
example,

$" blue" ok:0
$" green" ok:0
$" red" ok:0
2 PICK$ ok:0

The above causes the string “blue” to be copied to the top of the string stack.

VAL$ (--- d) (SS: str ---)

The word VAL$ uses NUMBER to convert the topmost string on the string stack to a double
number d (2-cell, 32-bit integer) on the data stack. An error occurs if the string cannot be
represented as a double number. An erroneous value (but, without an error report) will
result if a convertible number is outside the signed, 32-bit range: -2147483648 –
2147483647.

The same interpretation rules apply to the putative number string that apply to a number
typed at the terminal or loaded from a blocks file:

• ‘-’ and ‘.’ are the only non-numeric characters allowed.

• ‘-’ must be the first character in negative-number strings.

• ‘.’ can occur anywhere in the number string any number of times. It is ignored
except that the position of the last ‘.’ relative to the right end of the number is
stored in DPL .

• The number string is converted to a number in the current radix.

A number that is known to be a 16-bit number can be managed by dropping the leading 0
cell from the stack. A better procedure would be to DUP the top cell, test it and deal with

126 14.3 String Stack Words

the possibility that it may not be 0, which it must be for the double number to be
successfully converted to a 16-bit number.

Note, in the following examples, that the decimal point only affects output—the double
number on the stack is a 32-bit integer. DPL is updated every time NUMBER successfully
converts a string to a double number.

Examples:

$" 9900" VAL$ D. 9900 ok:0
$" 9900" VAL$ DROP . 9900 ok:0
$" 1234567890" VAL$ D. 1234567890 ok:0
$" 9.900" VAL$ D. 9.900 ok:0

$" 9.945" $" 1234.0" D. D. 1234.0 994.5 ok:0

$.S (---) (SS: ---)

The word $.S displays a non-destructive string stack dump to the output device. The
length of each string is given, along with the total number of strings on the string stack.
The amount of space allocated to the string stack, the amount of space in use, and the
amount of free space is also reported. An example appears above under the description of
REPLACE$.

DEPTH$ (--- n) (SS: ---)

Returns the current depth of the string stack, with 0 meaning the string stack is empty.

RESET$ (---) (SS: ---)

Resets, i.e., empties, the string stack.

 14.4 The String Stack

The string stack is ALLOTed from dictionary space by INIT$, which must be executed before the
String Stack Library can be used. The constant ($sSize) determines the amount of space
reserved and is set by INIT$ by the user after the library is loaded.

 14.5 Error Checking

Error checking is included in all words that could cause a string stack underflow or overflow
condition. In the event that an underflow or overflow is detected, the code aborts with an error
message.

Other words such as DUP$ also perform checks. For example, DUP$ checks that there is at least
one item on the string stack. SWAP$ checks that there are at least two items on the string stack,
etc.

 14.6 String Stack Format

The string stack grows from higher memory addresses to lower memory addresses.

The format of the strings on the string stack is very simple, as follows:

Actual length (1 cell) String payload (1 char=1 byte)

14 The Stack-based String Library 127

 14.7 String Constant Format

String Constants have the same format, but are preceded by a maximum length cell in order to
check that a requested string can be accommodated within the string constant:

Maximum length Actual length String payload
(1 cell) (1 cell) (1 char=1 byte)

 14.8 Throw Codes

The words in the library perform sanity checks on input parameters where necessary. In
particular, the string stack, being statically ALLOTed from dictionary space, is carefully guarded,
since the string stack is very likely to have code and/or data on either side of it, resulting in
catastrophic software failure in the event of a string stack underflow or overflow. Where errors
are detected, the library throws the following THROW codes:

Throw Code Nature of Error Thrown By

9900 String stack underflow (set$SP)

9901 String too large to assign :="

9902 String stack is empty PICK$
>$CONST
RIGHT$
REV$
UCASE$

DUP$
MID$
FINDC$
LTRIM$
LCASE$

LEN$
LEFT$
.$
RTRIM$
DROP$

9903 Need at least 2 strings on string stack SWAP$
FIND$

NIP$
CMP$

OVER$
+$

9904 String too large for string constant >$CONST

9905 Illegal LEN value MID$ LEFT$ RIGHT$

9906 Need at least 3 strings on string stack ROT$ -ROT$ REPLACE$

9907 String is not a legal number VAL$

9999 String stack not initialized any THROW if ($sSize) = 0

It should be noted that the author of this library has not checked that the THROW codes listed
here are used in other systems or libraries elsewhere.

 14.9 Author Information

The library was developed by Mark Wills in February, 2014. The code was released to the public
domain. He can be contacted by email via: markwills1970@gmail.com.

128 15 TI Forth Block Utilities

15 TI Forth Block Utilities
Words introduced in this chapter:

TIF2FBF TIFBLK TIFIDX TIFVU

The TI Forth Block Utilities are not part of the resident dictionary so must be loaded from
FBLOCKS (see current FBLOCKS file MENU for TI Forth Block Utilities). They are provided to
make it easy to view TI Forth blocks (called “screens” in TI Forth), index lines of a range of
blocks and copy a range of blocks to an fbForth 2.0 blocks file. The utilities listed in the first
three sections below perform these functions individually. The last section presents a
browser/copier that is patterned after the fbForth 2.0 block editors.

Remember that TI Forth disks start at block 0 and that TI Forth system disks are mixed format.

Note that “IS:” is short for “Input Stream:”.

 15.1 TIFBLK: Display TI Forth Block

TIFBLK (IS:blk DSKn)

TIFBLK displays block blk from disk DSKn. The display may be paused/resumed by
tapping any key except <BREAK>, which will abort the display. The display is
automatically paused if the block cannot be displayed all at once.

The following shows the first screen of a Text mode example displayed with the Forth
code just before the screen shot:

TIFBLK 11 DSK3

The display was paused after twelve lines were displayed due to wrapping of 64-character
lines on the 40-character display. Tapping a key will continue the display of the
remaining four lines.

15 TI Forth Block Utilities 129

The following is the same example in Text80 mode using the same Forth code as above:

 15.2 TIFIDX: Display TI Forth Index Lines

TIFIDX (IS:strtBlk endBlk DSKn)

TIFIDX displays the index lines (first lines) of a range of TI Forth blocks (strtBlk to
endBlk) from disk DSKn. The display may be paused/resumed by tapping any key except
<BREAK>, which will abort the display. The display is automatically paused if the block
cannot be displayed all at once.

The following shows the first screen of a Text mode example:

TIFIDX 10 15 DSK3

The index line, (line #0) of each block from block #10 – #15 is listed above. Had more
than 12 blocks (64 characters each index line) been selected, the display would have
paused as for TIFBLK in the previous section.

130 15.2 TIFIDX: Display TI Forth Index Lines

The following is the same example in Text80 mode:

 15.3 TIF2FBF: Copy TI Forth Blocks to fbForth Blocks

TIF2FBF (IS:srcStrtBlk srcEndBlk DSKn dstStrtBlk dstFile)

TIF2FBF functions in much the same way as CPYBLK . The format of the command is
the same except that the source is DSKn, not a filename. The n of DSKn is the disk
number of the TI Forth disk. The destination dstFile must be the name of an existing
blocks file (see MKBFL to create one). The following command will copy blocks 4 – 7
from TI Forth DSK3 to blocks 10 – 13 of DSK1.MYBLOCKS:

TIF2FBF 4 7 DSK3 10 DSK1.MYBLOCKS

 15.4 TIFVU: TI Forth Browser/Copier

TIFVU (IS:blk DSKn)

Browse TI Forth blocks and, optionally, copy a range of blocks to an fbForth blocks file.
The browser is interactive with the following functions:

Key Function

<FCTN+4> View next block.

<FCTN+6> View previous block.

<FCTN+D> View the next panel for Text mode—ignored in Text80 mode.

<FCTN+S> View the previous panel for Text mode—ignored in Text80 mode.

<FCTN+T> View a specific TI Forth block number.

<FCTN+F> Specify a destination fbForth block number for next copy.

<CTRL+F> Specify a destination fbForth blocks file, which must already exist.

<CTRL+S> Copy a range of blocks starting from the displayed TI Forth block to the
displayed destination fbForth block. You are prompted for the number of
blocks to copy after selecting this command.

<FCTN+9> Exit the browser.

Following is an example of the browser/copier in Text mode, which shows three panels of
the same block:

TIFVU 12 DSK3

15 TI Forth Block Utilities 131

Left panel showing
columns 0 – 33.

Middle panel
showing col-
umns 15 – 48.

Right panel showing
columns 30 – 63.

132 15.4 TIFVU: TI Forth Browser/Copier

And, here is the same example in Text80 mode:

16 Speech Words 133

16 Speech Words
Words introduced in this chapter:

SAY STREAM TALKING?

The words SAY , STREAM and TALKING? in this chapter were ported from TurboForth1 code
courtesy of Mark Wills.

A TI-99/4A equipped with a TI Speech Synthesizer module can be made to talk by sending the
Speech Synthesizer commands that include

• Word data addresses of words in the Speech Synthesizer’s resident vocabulary or
• Raw speech data.

The fbForth 2.0 speech words require the system ISR to be active, which is the default. See
Chapter 10 “Interrupt Service Routines (ISRs)” for how this works.

Consult § 22 of the Editor/Assembler Manual for a detailed discussion of speech processing.

 16.1 Testing the State of the Speech Synthesizer

Use TALKING? to test whether the Speech Synthesizer is busy before using SAY or STREAM in
following sections.

TALKING? (--- flag)

TALKING? returns flag = 0 if the Speech Synthesizer is idle, otherwise, flag = 1.

 16.2 Using the Speech Synthesizer’s Resident Vocabulary

To have the Speech Synthesizer speak words from its resident vocabulary (see table below), it is
sufficient to use SAY , described here:

SAY (addr n ---)

SAY needs on the stack the address addr of a block of Speech Synthesizer ROM speech
addresses and the number n of those addresses. This can be accomplished with
DATA[…]DATA .

This example uses addresses from the table below to say, “Do not be so negative.”:

HEX DATA[2480 4AAB 1A42 6153 48DC]DATA SAY ok:0

It is a good idea to use TALKING? before using SAY in word definitions to insure the Speech
Synthesizer is not busy.

 16.3 The Speech Synthesizer’s Resident Vocabulary

The following table of phrases and addresses from § 24.6 “Speech Synthesizer Resident
Vocabulary” in the Editor/Assembler Manual is included here for your convenience:

134 16.3 The Speech Synthesizer’s Resident Vocabulary

Phrase Address Phrase Address Phrase Address

- (negative) 48DC 2 145C 6 15A8

+ (positive) 51B3 3 149A 7 15E8

. (point) 50EC 4 14E7 8 1637

0 13C3 5 1531 9 1664

1 1409

A (ay) 16E4 ALL 1807 ANY 1962

A1 (uh) 1700 AM 1830 ARE 556E

ABOUT 1714 AN 1876 AS 19A7

AFTER 1769 AND 18AC ASSUME 19E8

AGAIN 17A5 ANSWER 1913 AT 1A25

B 1A42 BLACK 1B47 BUT 1C20

BACK 1A64 BLUE 1B8A BUY 1C48

BASE 1A8F BOTH 1BB6 BY 1C48

BE 1A42 BOTTOM 1BEA BYE 1C48

BETWEEN 1ADE

C 1C86 COLOR 1E20 COMPUTER 2034

CAN 1CD9 COME 1E54 CONNECTED 208B

CASSETTE 1D10 COMES 1E87 CONSOLE 20F3

CENTER 1D47 COMMA 1EDE CORRECT 213C

CHECK 1D82 COMMAND 1F1A COURSE 2182

CHOICE 1DA2 COMPLETE 1F71 CYAN 21C0

CLEAR 1DE6 COMPLETED 1FCD

D 2203 DIFFERENT 23C4 DONE 253E

DATA 223C DISKETTE 242D DOUBLE 2599

DECIDE 2294 DO 2480 DOWN 25D3

DEVICE 22FD DOES 24B3 DRAW 2612

DID 2366 DOING 24EA DRAWING 2668

E 26CB ELEVEN 2579 ENTER 28AD

EACH 26F0 ELSE 27B6 ERROR 28EF

EIGHT 1637 END 27F5 EXACTLY 2937

EIGHTY 2723 ENDS 2866 EYE 3793

16 Speech Words 135

Phrase Address Phrase Address Phrase Address

F 299F FINISH 2B5B FORTY 2C3E

FIFTEEN 29C2 FINISHED 2B94 FOUR 14E7

FIFTY 2A1D FIRST 2BD7 FOURTEEN 2C7F

FIGURE 2A60 FIT 2C14 FOURTH 2D19

FIND 2AD7 FIVE 1531 FROM 2D74

FINE 2B1E FOR 14E7 FRONT 2DBC

G 2DEB GO 2FFC GOODBYE 3148

GAMES 2E28 GOES 3031 GOT 31A0

GET 2E8C GOING 3079 GRAY 31D1

GETTING 2EBA GOOD 30D6 GREEN 321D

GIVE 2F38 GOOD WORK 30FA GUESS 327E

GIVES 2F8D

H 32C0 HEAD 348C HIT 360A

HAD 32EF HEAR 34E5 HOME 363E

HAND 3339 HELLO 351A HOW 3689

HANDHELD UNIT 337F HELP 3571 HUNDRED 36EF

HAS 3405 HERE 34E5 HURRY 3757

HAVE 344A HIGHER 35AE

I 3793 INCH 38B5 INSTRUCTIONS 39BD

I WIN 37CF INCHES 38FA IS 3A32

IF 3850 INSTRUCTION 394B IT 3A7A

IN 3872

J 3AAE JOYSTICK 3AED JUST 3B4C

K 3B8A KEYBOARD 3BE9 KNOW 3C4F

KEY 3BB9

L 3C8F LEFT 3E78 LOAD 404B

LARGE 3CD0 LESS 3EB2 LONG 40D3

LARGER 3D19 LET 3F08 LOOK 413D

LARGEST 3D67 LIKE 3F2F LOOKS 4191

LAST 3DDE LIKES 3F6A LOWER 41E7

LEARN 3E1E LINE 3FD5

136 16.3 The Speech Synthesizer’s Resident Vocabulary

Phrase Address Phrase Address Phrase Address

M 4233 MEMORY 4405 MODULE 45DF

MADE 4267 MESSAGE 446C MORE 4642

MAGENTA 42AE MESSAGES 44D7 MOST 4693

MAKE 432E MIDDLE 4551 MOVE 46DF

ME 437D MIGHT 4593 MUST 473D

MEAN 43BD

N 4789 NEXT 4959 NO 3C4F

NAME 47C0 NICE TRY 49A5 NOT 4AAB

NEAR 4833 NINE 1664 NOW 4ADA

NEED 4880 NINETY 4A4E NUMBER 4B20

NEGATIVE 48DC

O 4B7D ON 4C41 ORDER 4D34

OF 4BBA ONE 1409 OTHER 4D8A

OFF 4C13 ONLY 4C8B OUT 4DD4

OH 4B7D OR 4CDC OVER 4E0A

P 4E66 PLEASE 5093 PRINTER 52AA

PART 4E9F POINT 50EC PROBLEM 52F9

PARTNER 4EE0 POSITION 5148 PROBLEMS 5360

PARTS 4F31 POSITIVE 51B3 PROGRAM 53EE

PERIOD 4F81 PRESS 5231 PUT 5477

PLAY 4FE5 PRINT 526D PUTTING 54AA

PLAYS 502D

Q 5520

R 556E RECORDER 5745 RETURN 58CF

RANDOMLY 55A0 RED 57C1 REWIND 593A

READ (read) 5652 REFER 5801 RIGHT 7C38

READ1 (red) 57C1 REMEMBER 5861 ROUND 59C2

READY TO START 56B3

S 5A5A SHAPES 5DDE SOME 6197

SAID 5AA1 SHIFT 5E27 SORRY 61C6

SAVE 5AEF SHORT 5E5C SPACE 6226

16 Speech Words 137

Phrase Address Phrase Address Phrase Address

SAY 5B65 SHORTER 5EA5 SPACES 625D

SAYS 3BA2 SHOULD 5F24 SPELL 62CC

SCREEN 5BFB SIDE 5F6D SQUARE 6333

SECOND 5C5B SIDES 5FC8 START 637C

SEE 1C86 SIX 15A8 STEP 63C5

SEES 5CBF SIXTY 601A STOP 63F7

SET 5D1B SMALL 6070 SUM 6197

SEVEN 15E8 SMALLER 60AE SUPPOSED 6423

SEVENTY 5D50 SMALLEST 60F1 SUPPOSED TO 6489

SHAPE 5DA5 SO 6153 SURE 64F4

T 6551 THERE 6A72 TIME 6E69

TAKE 658B THESE 6ADE TO 145C

TEEN 65BF THEY 6B47 TOGETHER 6EB0

TELL 6603 THING 6BA0 TONE 6F1F

TEN 664E THINGS 6C0F TOO 145C

TEXAS INSTRUMENTS 6696 THINK 6C73 TOP 6F8D

THAN 675B THIRD 6CBC TRY 6FBB

THAT 67B6 THIRTEEN 6D11 TRY AGAIN 700F

THAT IS INCORRECT 6816 THIRTY 6DA2 TURN 7092

THAT IS RIGHT 68FE THIS 6DDE TWELVE 70CE

THE (thee) 6974 THREE 149A TWENTY 7119

THE1 (the) 69B6 THREW 6E26 TWO 145C

THEIR 6A72 THROUGH 6E26 TYPE 7170

THEN 69E1

U 71BE UNDERSTAND 729D UPPER 73C3

UHOH 71F4 UNTIL 732F USE 7403

UNDER 7245 UP 739F

V 7449 VARY 7487 VERY 74DA

W 7520 WERE 775D WILL 7A11

WAIT 759D WHAT 77BC WITH 7A6B

WANT 75DF WHAT WAS THAT 77E9 WON 1409

WANTS 7621 WHEN 7875 WORD 7AAB

WAY 76B0 WHERE 78AB WORDS 7B0A

138 16.3 The Speech Synthesizer’s Resident Vocabulary

Phrase Address Phrase Address Phrase Address

WE 767D WHICH 78F4 WORK 7B75

WEIGH 76B0 WHITE 7924 WORKING 7BBC

WEIGHT 759D WHO 7969 WRITE 7C38

WELL 7717 WHY 79B4

X 7C8D

Y 7CB2 YET 7D99 YOU WIN 7DDB

YELLOW 7CF8 YOU 71BE YOUR 7E4D

YES 7D58

Z 7E99 ZERO 13C3

 16.4 Streaming Raw Speech Data

You can stream raw speech data to the Speech Synthesizer with the following word:

STREAM (addr n ---)

STREAM needs on the stack the address addr of a block of raw speech data to be spoken
and the number of cells n in the buffer. This can be accomplished with DATA[…]DATA .
STREAM will feed the raw speech data to the Speech Synthesizer.

You should use TALKING? (see § 16.1 “Testing the State of the Speech Synthesizer” above) in
word definitions to insure the Speech Synthesizer is not busy.

17 Sound Words 139

17 Sound Words
Words introduced in this chapter:

PLAY PLAYING? SOUND

The words PLAY , SOUND and PLAYING? in this chapter were ported from TurboForth1 code
courtesy of Mark Wills.

The TI-99/4A uses the TMS9919 Sound Generator Controller to generate sound. There are three
tone generators and one noise generator available. For more detailed information about
generating sound with the TMS9919, consult § 20 “Sound” in the Editor/Assembler Manual.

 17.1 Generating Individual Sounds

The three tone generators and the noise generator may be managed directly by the programmer
with the SOUND word:

SOUND (pitch vol ch# ---)

Pitch pitch, volume vol and channel ch# are as described in the Editor/Assembler Manual
in § 20. Pitch values range from 0 – 1023, 0 representing the highest pitch. Volume
values range from 0 – 15, 15 representing silence. Channels 0 – 2 represent the
corresponding tone generators and channel 3 is the noise generator.

SOUND uses the pitch value for setting the type of noise for the noise generator (channel 3). Shift
rates are 0 – 3. Noise type can be white noise (0) or periodic noise (4). The pitch value to pass to
SOUND is the sum of shift rate and noise type and ranges from 0 – 7.

Once a tone or noise generator is started, the sound/noise continues until silenced by executing
SOUND with a volume of 15. The pitch must be supplied, but is irrelevant. The following Forth
code will silence channel 2:

0 15 2 SOUND ok:0

 17.2 Playing Sound Lists

Playing sound lists involves setting up a sound table with one or more contiguous sound lists and
providing a flag and the address of the sound table to PLAY (see description below).

fbForth 2.0 does not use the console’s keyscan routine for the interrupt-driven playing of sound
lists as described in § 20 of the Editor/Assembler Manual, but rather processes them in its own
ISR (see Chapter 10 “Interrupt Service Routines (ISRs)”). A sound table is, however, set up in
the same manner as described in the Editor/Assembler Manual.

A second, presumably shorter, sound table can also be played while muting the first until the
second table is finished. This should make it easy to periodically interrupt a game theme with
short event-driven sounds such as crashes, beeps and warnings.

Each sound list consists of a list of sound commands starting with a byte count and ending with a
duration count byte (sixtieths of a second) that is not included in the byte count. The last sound

140 17.2 Playing Sound Lists

list should silence all four sound generators (or, at least, the ones you used) and end with a
duration of 0. After setting up a sound table, it may be played with PLAY and monitored with
PLAYING? :

PLAY (addr flag ---)

Starts playing sound lists in the sound table set up at address addr depending on flag and
continues until a sound list begins with a count of 0 or ends with a duration of 0. The
value of flag can be positive, negative or zero with the following effect:

Flag Action

0 Do not play if either sound table is active.

1 Unconditionally play, killing all previous sound tables.

-1 Plays as sound table #2, muting sound table #1 for the duration of sound table #2.

PLAYING? (--- flag)

PLAYING? checks both fbForth 2.0 sound status registers, ORs them and leaves that
value on the stack as flag. If flag = 0, no sound table is active.

It should be noted that PLAYING? doe not work for sounds initiated with SOUND because
SOUND communicates with the TMS9919 directly, bypassing the fbForth 2.0 sound
status registers.

A sound table may be prepared for PLAY with DATA[…]DATA by dropping the cell count. Here
is such a sound table set up as the word CHIME , which was taken from the chime sound example
of § 20.4.2 of the Editor/Assembler Manual. For convenience, every other sound list in the
CHIME sound table is shaded:

HEX
: CHIME (-- addr)
 DATA[
 059F BFDF FFE3 0109 8E01 A402 C501 90B6 D306 0391 B7D4 0503
 92B8 D504 05A7 0493 B0D6 0503 94B1 D706 0395 B2D8 0705 CA02
 96B3 D006 0397 B4D1 0503 98B5 D204 0585 0390 B6D3 0503 91B7
 D406 0392 B8D5 0705 A402 93B0 D606 0394 B1D7 0503 95B2 D804
 05C5 0196 B3D0 0503 97B4 D106 0398 B5D2 0703 9FBF DF00
]DATA DROP ;

The CHIME sound table may now be played unconditionally with

 CHIME 1 PLAY ok:0

18 Signed Integer Division 141

18 Signed Integer Division
When performing integer division, we usually think no further than the fact that there is a quo-
tient and a remainder. This is often all there is. This is the case when both dividend and divisor
are positive and, usually, when they have the same sign, positive or negative. But, what do we do
when the signs differ? In what direction do we round the quotient? Toward zero (truncation)?
Toward positive infinity (ceiling)? Negative infinity (floor)? Greatest integer less than or equal
to the quotient (rounded)? What should be the sign of the remainder? The same as the dividend?
The divisor? Always positive (Euclidean)? Always negative? Whatever we choose must satisfy
the equation,

n=q d+r

where n = numerator (dividend), q = quotient, d = denominator (divisor) and r = remainder.

Among the many possible definitions for signed integer division [1] [2] are

1. Truncation: q = trunc (n/d) (T-division),24

2. Floor: q =⌊n /d ⌋ (F-division),

3. Ceiling: q =⌈n /d ⌉ (C-division),

4. Rounding q = round (n /d) (R-division) and

5. Euclidean 0 ⩽ r <∣ d∣ (r always positive). (E-division)

The following table shows most of the possible results for each of the above-described divisions
for both ∣n∣>∣d∣ and ∣n∣<∣d∣ . The capital-letter subscripts (after Leijen [1]) correspond to
the above division types and their order:

(n,d) (qT,rT) (qF,rF) (qC,rC) (qR,rR) (qE,rE)

(+10,+4) (+2,+2) (+2,+2) (+3,–2) (+2,+2) (+2,+2)

(+10,–4) (–2,+2) (-3,–2) (–2,+2) (–2,+2) (–2,+2)

(–10,+4) (–2,–2) (-3,+2) (–2,–2) (–2,–2) (-3,+2)

(–10,–4) (+2,–2) (+2,–2) (+3,+2) (+2,–2) (+3,+2)

(+2,+3) (0,+2) (0,+2) (+1,–1) (+1,–1) (0,+2)

(+2,–3) (0,+2) (–1,–1) (0,+2) (–1,–1) (0,+2)

(–2,+3) (0,–2) (–1,+1) (0,–2) (–1,+1) (–1,+1)

(–2,–3) (0,–2) (0,–2) (+1,+1) (+1,+1) (+1,+1)

When discussing “Integer Functions and Elementary Number Theory”, Knuth defines the quo-
tient q of two real numbers, x and y, as q =⌊ x / y ⌋ [3]. This is the F-division meant in this dis-
cussion.

Boute compares more than just the five definitions of signed integer division listed above. E-di -
vision and F-division are shown to be superior, with E-division edging out F-division. E-division

24 I have adopted Leijen’s [1] use of the first letter of each division type’s definitive operation followed by “-division”
to identify each type of division.

142 18 Signed Integer Division

has only positive r, no matter the signs of n and d [2]. Leijen considers E-division “rare, but
mathematically elegant” [1]. Both are considered more suitable for various technical applications
like raster scan display generation, time division multiplexing and communications [2].

There may be good reasons for choosing any one of several of the above-described types of divi -
sion, but we are only considering two, (1) T-division, the so-called “symmetric integer division”,
which involves rounding toward zero or truncation and (2) F-division, “floored integer division”,
which involves rounding toward negative infinity. The reason for limiting the rest of this discus-
sion to these two, if not obvious, is that the default for TI Forth and fbForth 2.0 is T-division and
the Forth-83 standard’s superior F-division. Probably the only reason (and, probably, not a good
reason!) to choose T-division is that most of us expect the answers it gives and T-division is what
many CPUs employ. Developers often do not deign to change the underlying function of the
CPU. Notably, the TMS9900 is not such a CPU by virtue of the fact that it does not have any in-
struction for signed integer division. It remains for the developer of higher-level languages based
on the TMS9900 to decide how to implement signed integer division. TI Forth, and hence
fbForth, followed fig-Forth’s use of T-division.

T-division is considered symmetric due to its rounding the quotient towards zero, i.e., truncation,
which produces a “symmetric”25 distribution of the integer quotient around zero. This results in a
disconcerting discontinuity near zero for the quotient, when it changes sign, and for the cyclic na -
ture of the remainder, which changes sign because it retains the sign of the dividend [4]. For the
remainder to be cyclic for any given d, r = rem (n/d)= rem((n+d)/d) should hold for all n.
The following table shows what happens to the remainder for T- and F-divisions, with d = 3:

d = 3 T-division F-division

n rem(n/d) rem((n+d)/d) rem(n/d) rem((n+d)/d)

4 1 1 1 1

3 0 0 0 0

2 2 2 2 2

1 1 1 1 1

0 0 0 0 0

-1 -1 2 2 2

-2 -2 1 1 1

-3 0 0 0 0

-4 -1 -1 2 2

The breakdown in the cycling of the remainder for T-division can be seen in the shaded cells
above. F-division, on the other hand, provides continuity of the integer quotient near zero as well
as a cyclic remainder (see above table) that maintains the sign of the divisor.

This suggests very sound reasons for choosing floored integer division, especially when
calculating position for electromechanical devices such as plotters and robots so that motions will

25 The use of “symmetric” here is to point out that only the absolute values of the quotient are truly symmetric about
zero. The actual values are anti-symmetric mathematically [4]. The quotes will be dropped elsewhere because of
common usage and to avoid distraction.

18 Signed Integer Division 143

be as nearly continuous as possible [4]. It was for this reason that floored integer division was
adopted for Forth-83 [5]. Because of the turmoil and consternation this caused many Forth
programmers, Forth standards since then have made it optional by providing a way to do either T-
division or F-division:

By introducing the requirement for “floored” division, Forth 83 produced much contro-
versy and concern on the part of those who preferred the more common practice followed
in other languages of implementing division according to the behavior of the host CPU,
which is most often symmetric (rounded toward zero). In attempting to find a compro-
mise position, this standard provides primitives for both common varieties, floored and
symmetric (see SM/REM). FM/MOD is the floored version [6].

Smith [4] summarizes, “Floored division is simply more useful in the majority of applications
programs.”

 18.1 M/

T-division (symmetric integer division) is the default for fbforth 2.0, but can easily be changed
to F-division (floored integer division) by changing the user variable S|F .

S|F (--- addr) (read “S or F” for “Symmetric or Floored”)

User variable that determines whether M/ uses T-division or F-division. A value of zero
(the default) specifies T-division and a non-zero value, F-division.

M/ (d n --- rem quot)

A mixed magnitude math operator that leaves the signed, single-number (16 bits)
remainder rem and signed, single-number quotient quot from a signed, double-number
(32 bits) dividend d and single-number divisor n. M/ acts like one of the ANS Forth
words, SM/REM (symmetric M/) or FM/MOD (floored M/) depending on the value in
S|F .

SM/REM and FM/MOD (see next section) have the same stack signature as M/ . Where they differ
is whether the division is symmetric or floored when the signs of divisor and dividend differ.

Currently, M/ uses T-division since fbForth is based on fig-Forth, which uses T-division. It will
continue to be the default to support expectations of TI Forth programmers. However, S|F will
make it easy for the user to change the behavior of M/ at will to accommodate floored integer
division. Doing so will change all of the following words to use floored integer division because
they are all based on M/ :

 /MOD / MOD */MOD */

Mark Wills’ TurboForth1 uses floored integer division by default because it complies with the
Forth-83 Standard, which, as noted by Smith [4], was the first standard to make that move. The
author would actually prefer to make floored integer division the fbForth default, but has chosen
not to do so for the reasons in the last paragraph.

M/ does not test for overflow (an error). It simply passes back to the user the result of the
TMS9900 DIV instruction. DIV tests for overflow before actually performing the division by
checking that the MSW (high-order 16 bits) of the 32-bit dividend is smaller than the 16-bit divi-
sor. DIV, by the way, is unsigned, for which reason M/ presumes the supplied dividend and divi-
sor are signed, i.e., that the leftmost bits are sign bits, and only calls DIV with their absolute val-

144 18.1 M/

ues. If the dividend’s MSW ≥ the divisor, DIV does not perform the division. This has the effect
of setting the remainder to the dividend’s LSW and the quotient to the dividend’s MSW, which
are both passed to the user as the results of M/ without throwing an error. This was carried over
from TI Forth’s behavior.

 18.2 SM/REM and FM/MOD

SM/REM performs T-division on a signed 32-bit numerator by a signed 16-bit denominator,
yielding a signed 16-bit remainder and a signed 16-bit quotient. The quotient is rounded toward
zero, i.e., truncated, while the remainder takes the sign of the dividend. The code for SM/REM in
fbForth 2.0 is written in ALC, so here it is were it written in high-level Forth:

Word Definition Comment

: SM/REM (d n --- rem quot) <== stack signature
 OVER >R >R copy MSB of numerator to and move denominator to return stack
 DABS R ABS make numerator and denominator both positive
 U/ divide to get remainder and quotient
 R> R XOR get sign of quotient by XOR of numerator & MSB of denominator
 +- SWAP give quotient proper sign
 R> +- SWAP give any remainder sign of numerator
;

FM/MOD performs floored integer division of a signed 32-bit numerator by a signed 16-bit
denominator, yielding a signed 16-bit remainder and a signed 16-bit quotient. The quotient is
rounded toward negative infinity, i.e., floored, while the remainder takes the sign of the divisor.
The code for FM/MOD in fbForth 2.0 is written in ALC, so here it is were it written in high-level
Forth:

Word Definition Comment

: FM/MOD (d n --- rem quot) <== stack signature
 OVER OVER XOR 0< denominator and numerator signs differ?
 IF signs differ
 >R R SM/REM OVER do symmetric division
 IF deal with remainder
 1- SWAP R> + SWAP floor quotient;rem = rem + denominator
 ELSE no remainder
 R> DROP clean up return stack
 THEN
 ELSE denominator and numerator signs same
 SM/REM do symmetric division (same as floored here)
 THEN

;

18 Signed Integer Division 145

The code for FM/MOD is written in terms of SM/REM and is very similar to the Forth code for
/MOD at the end of Smith’s article [4].

 18.3 S|F Programming Considerations

S|F changes how M/ works, which changes all of the other words (/MOD / MOD */MOD */)
that use signed integer division except SM/REM and FM/MOD , which unconditionally perform T-
division and F-division, respectively. If you change the value of S|F , you will change how
signed integer division works from that point on in fbForth 2.0, regardless of when words using
such division were defined, unless those words explicitly set S|F themselves.

Only two words in the resident dictionary use signed integer division but are not affected by
changes to S|F . FBLOCKS is likely quite another story and is left as an exercise for the reader.

Any words requiring the use of one specific type of signed integer division should save the cur -
rent value of S|F before changing it and restoring it when done. This is especially important for
development of software packages for other users of fbForth 2.0 to avoid surprises.

Changes to S|F do not survive COLD , but can be made to do so by also changing the initial value
of S|F in the initial value table for User Variables. That table starts at the address in UCONS$.
The offset for S|F is 4Ah. Both of these are listed in Appendix F “User Variables in fbForth
2.0”. The following code will set the initial value of S|F to 1 for F-division:

HEX 1 UCONS$ @ 04A + !

To insure that S|F has a particular value, e.g., 1 for F-division, you might set S|F

1. As the first order of business in any project.

2. In block #1 of FBLOCKS: 1 S|F !

3. (2) plus the initial value in block #1 so S|F will survive COLD :
HEX 1 S|F ! 1 UCONS$ @ 04A + !

References

1. Daan Leijen, Division and Modulus for Computer Scientists, 2001, www.microsoft.com/en-
us/research/wp-content/uploads/2016/02/divmodnote-letter.pdf.

2. Raymond T. Boute, The Euclidean Definition of the Functions div and mod, ACM
Transactions on Programming Languages and Systems, Vol. 14, No. 2, April 1992.

3. Donald E. Knuth, The Art of Computer Programming: Volume I, Fundamental Algorithms,
Third Edition, Boston: Addison-Wesley, 1997, p. 39.

4. Robert L. Smith, Signed Integer Division, Dr. Dobb’s Journal, Vol. 8, No. 9, September 1983.

5. Forth Standards Team, Forth-83 Standard, 1983, http://forth.sourceforge.net/standard/fst83/.

6. Forth 200x Standardisation Committee, Forth 2012 Standard, 2013, https://forth-
standard.org/standard/words.

146 18.3 S|F Programming Considerations

This page left intentionally blank

Appendix A ASCII Keycodes (Sequential Order) 147

Appendix A ASCII Keycodes (Sequential
Order)

ASCII Code ASCII Code

 Character hex decimal Character hex decimal

NUL <CTRL+,> 00h 0 SP 20h 32

SOH <CTRL+A> <FCTN+7> 01h 1 ! 21h 33

STX <CTRL+B> <FCTN+4> 02h 2 " <FCTN+P> 22h 34

ETX <CTRL+C> <FCTN+1> 03h 3 # 23h 35

EOT <CTRL+D> <FCTN+2> 04h 4 $ 24h 36

ENQ <CTRL+E> <FCTN+=> 05h 5 % 25h 37

ACK <CTRL+F> <FCTN+8> 06h 6 & 26h 38

BEL <CTRL+G> <FCTN+3> 07h 7 ' <FCTN+O> 27h 39

BS <CTRL+H> <FCTN+S> 08h 8 (28h 40

HT <CTRL+I> <FCTN+D> 09h 9) 29h 41

LF <CTRL+J> <FCTN+X> 0Ah 10 * 2Ah 42

VT <CTRL+K> <FCTN+E> 0Bh 11 + 2Bh 43

FF <CTRL+L> <FCTN+6> 0Ch 12 , 2Ch 44

CR <CTRL+M> 0Dh 13 - 2Dh 45

SO <CTRL+N> <FCTN+5> 0Eh 14 . 2Eh 46

SI <CTRL+O> <FCTN+9> 0Fh 15 / 2Fh 47

DLE <CTRL+P> 10h 16 0 <CTRL+0> 30h 48

DC1 <CTRL+Q> 11h 17 1 <CTRL+1> 31h 49

DC2 <CTRL+R> 12h 18 2 <CTRL+2> 32h 50

DC3 <CTRL+S> 13h 19 3 <CTRL+3> 33h 51

DC4 <CTRL+T> 14h 20 4 <CTRL+4> 34h 52

NAK <CTRL+U> 15h 21 5 <CTRL+5> 35h 53

SYN <CTRL+V> 16h 22 6 <CTRL+6> 36h 54

ETB <CTRL+W> 17h 23 7 <CTRL+7> 37h 55

CAN <CTRL+X> 18h 24 8 38h 56

EM <CTRL+Y> 19h 25 9 <FCTN+Q> <FCTN+.> 39h 57

SUB <CTRL+Z> 1Ah 26 : <FCTN+/> 3Ah 58

ESC <CTRL+.> 1Bh 27 ; <CTRL+/> 3Bh 59

FS <CTRL+;> 1Ch 28 < <FCTN+0> 3Ch 60

GS <CTRL+=> 1Dh 29 = <FCTN+;> 3Dh 61

RS <CTRL+8> 1Eh 30 > <FCTN+B> 3Eh 62

 US <CTRL+9> 1Fh 31 ? <FCTN+H> <FCTN+I> 3Fh 63

148 Appendix A ASCII Keycodes (Sequential Order)

…continued from previous page—

ASCII Code ASCII Code

 Character hex decimal Character hex decimal

@ <FCTN+J> 40h 64 ` <FCTN+C> 60h 96

A <FCTN+K> 41h 65 a 61h 97

B <FCTN+L> 42h 66 b 62h 98

C <FCTN+M> 43h 67 c 63h 99

D <FCTN+N> 44h 68 d 64h 100

E 45h 69 e 65h 101

F <FCTN+Y> 46h 70 f 66h 102

G 47h 71 g 67h 103

H 48h 72 h 68h 104

I 49h 73 i 69h 105

J 4Ah 74 j 6Ah 106

K 4Bh 75 k 6Bh 107

L 4Ch 76 l 6Ch 108

M 4Dh 77 m 6Dh 109

N 4Eh 78 n 6Eh 110

O 4Fh 79 o 6Fh 111

P 50h 80 p 70h 112

Q 51h 81 q 71h 113

R 52h 82 r 72h 114

S 53h 83 s 73h 115

T 54h 84 t 74h 116

U 55h 85 u 75h 117

V 56h 86 v 76h 118

W 57h 87 w 77h 119

X 58h 88 x 78h 120

Y 59h 89 y 79h 121

Z 5Ah 90 z 7Ah 122

[<FCTN+R> 5Bh 91 { <FCTN+F> 7Bh 123

\ <FCTN+Z> 5Ch 92 | <FCTN+A> 7Ch 124

] <FCTN+T> 5Dh 93 } <FCTN+G> 7Dh 125

^ 5Eh 94 ~ <FCTN+W> 7Eh 126

_ <FCTN+U> 5Fh 95 DEL <FCTN+V> 7Fh 127

Appendix B ASCII Keycodes (Keyboard Order) 149

Appendix B ASCII Keycodes (Keyboard
Order)

ASCII Code ASCII Code

Control Key hex decimal Function Key hex decimal
<CTRL+1> 31h 49 <FCTN+1> 03h 3
<CTRL+2> 32h 50 <FCTN+2> 04h 4
<CTRL+3> 33h 51 <FCTN+3> 07h 7
<CTRL+4> 34h 52 <FCTN+4> 02h 2
<CTRL+5> 35h 53 <FCTN+5> 0Eh 14
<CTRL+6> 36h 54 <FCTN+6> 0Ch 12
<CTRL+7> 37h 55 <FCTN+7> 01h 1
<CTRL+8> 1Eh 30 <FCTN+8> 06h 6
<CTRL+9> 1Fh 31 <FCTN+9> 0Fh 15
<CTRL+0> 30h 48 <FCTN+0> 3Ch 60
<CTRL+=> 1Dh 29 <FCTN+=> 05h 5
<CTRL+Q> 11h 11 <FCTN+Q> 39h 57
<CTRL+W> 17h 23 <FCTN+W> 7Eh 126
<CTRL+E> 05h 5 <FCTN+E> 0Bh 11
<CTRL+R> 12h 18 <FCTN+R> 5Bh 91
<CTRL+T> 14h 20 <FCTN+T> 5Dh 93
<CTRL+Y> 19h 25 <FCTN+Y> 46h 70
<CTRL+U> 15h 21 <FCTN+U> 5Fh 95
<CTRL+I> 09h 9 <FCTN+I> 3Fh 63
<CTRL+O> 0Fh 15 <FCTN+O> 27h 39
<CTRL+P> 10h 16 <FCTN+P> 22h 34

 <CTRL+/> 3Bh 59 <FCTN+/> 3Ah 58

150 Appendix B ASCII Keycodes (Keyboard Order)

…continued from previous page—

ASCII Code ASCII Code

Control Key hex decimal Function Key hex decimal
<CTRL+A> 01h 1 <FCTN+A> 7Ch 124
<CTRL+S> 13h 19 <FCTN+S> 08h 8
<CTRL+D> 04h 4 <FCTN+D> 09h 9
<CTRL+F> 06h 6 <FCTN+F> 7Bh 123
<CTRL+G> 07h 7 <FCTN+G> 7Dh 125
<CTRL+H> 08h 8 <FCTN+H> 3Fh 63
<CTRL+J> 0Ah 10 <FCTN+J> 40h 64
<CTRL+K> 0Bh 11 <FCTN+K> 41h 65
<CTRL+L> 0Ch 12 <FCTN+L> 42h 66
<CTRL+;> 1Ch 28 <FCTN+;> 3Dh 61
<CTRL+Z> 1Ah 26 <FCTN+Z> 5Ch 92
<CTRL+X> 18h 24 <FCTN+X> 0Ah 10
<CTRL+C> 03h 3 <FCTN+C> 60h 96
<CTRL+V> 16h 22 <FCTN+V> 7Fh 127
<CTRL+B> 02h 2 <FCTN+B> 3Eh 62
<CTRL+N> 0Eh 14 <FCTN+N> 44h 68
<CTRL+M> 0Dh 13 <FCTN+M> 43h 67
<CTRL+,> 00h 0 <FCTN+,> 38h 56
<CTRL+.> 1Bh 27 <FCTN+.> 39h 57

Appendix C How fbForth 2.0 differs from Starting FORTH (1st Ed.) 151

Appendix C How fbForth 2.0 differs from
Starting FORTH (1st Ed.)

Page Word Changes Required

10 BACKSPACE <FCTN+S> produces a backspace on the TI 99/4A.

10 ok fbForth 2.0 automatically prints a space before “ ok:n ”.

16 The fbForth 2.0 dictionary can store names up to 31 characters in length.

18 ^ Not a special character in fbForth 2.0.

18 ." Will execute inside or outside a colon definition in fbForth 2.0.

42 /MOD Uses signed numbers in fbForth 2.0. Remainder has sign of dividend.

42 MOD Uses signed numbers in fbForth 2.0. Remainder has sign of dividend.

50 .S The resident fbForth 2.0 version prints a vertical bar ‘|’ instead of ‘0’
followed by the stack contents. The stack contents will be printed as
unsigned numbers. The definition shown does not work in fbForth 2.0,
even changing 'S to SP@ 2- to account for vocabulary differences,
because of the expectation that the bottom stack location contains ‘0’ for
an empty stack. It also does not print the extra number at the left to mark
the bottom of the stack when the stack is not empty.

52 2SWAP This word is not in fbForth 2.0 but can be created with the following
definition:

: 2SWAP ROT >R ROT R> ;

52 2DUP This word is not in fbForth 2.0 but can be created with the following
definition:

: 2DUP OVER OVER ;

52 2OVER This word is not in fbForth 2.0 but can be created with the following
definition:

: 2OVER SP@ 6 + @ SP@ 6 + @ ;

52 2DROP This word is not in fbForth 2.0 but can be created with the following
definition:

: 2DROP DROP DROP ;

57 When you redefine a word that is already in the dictionary, fbForth 2.0
will issue a message saying “ WORD isn’t unique. ”. In the example,
a message saying “ GREET isn’t unique. ” would appear.

60 In fbForth 2.0, there is no unique limit to the number of blocks (screens)
in a blocks file except the number of blocks included when the file was
created.

152 Appendix C How fbForth 2.0 differs from Starting FORTH (1st Ed.)

Page Word Changes Required

63-82 The fbForth 2.0 Editor is different (much better) than the editor
described in this section. Read the section of this fbForth 2.0 Manual
describing the Editor.

83 DEPTH DEPTH is defined in the resident fbForth 2.0 dictionary.

84 COPY fbForth 2.0 has CPYBLK for this purpose, q.v.

84-5 Ignore Editor words.

89ff THEN THEN is in the fbForth 2.0 vocabulary and is a synonym for the word
ENDIF . Many people find ENDIF less confusing than THEN .

91 NOT This word is not in fbForth 2.0, but can be created with the following
definition:

: NOT 0= ;

101 ?DUP This word is identical to -DUP in fbForth 2.0. Use the following
definition if necessary:

: ?DUP -DUP ;

101ff ABORT" As with the Forth-79 Standard, fbForth 2.0 provides ABORT instead of
ABORT" .

102 ?STACK In fbForth 2.0 this word automatically calls ABORT and prints the
appropriate error message.

107 2* This word is not in fbForth 2.0, but can be created with the following
definition:

: 2* DUP + ;

107 2/ This word is not in fbForth 2.0, but can be created with the following
definition:

: 2/ 1 SRA ;

108 NEGATE This word is not in fbForth 2.0, but can be created with the following
definition:

: NEGATE MINUS ;

110 I This word exists in fbForth 2.0 but also has a duplicate definition, R . I
and R are identical in function. They both get a copy of the return stack
top.

110 I' This word is not in fbForth 2.0, but can be created with the following
definition: (Note: R is a synonym for I .)

: I' R> R SWAP >R ;

112 If you will notice, there is a . (print) missing in the QUADRATIC
definition. You must add a . after the last + to make QUADRATIC work
correctly.

112 Ignore the last two paragraphs. They do not apply.

Appendix C How fbForth 2.0 differs from Starting FORTH (1st Ed.) 153

Page Word Changes Required

131 Just a reminder! You must define 2DUP and 2DROP before the COMPOUND
example may be used.

132 There is a mistake in the second definition of TABLE. It should look like
this:

: TABLE CR 11 1 DO

11 1 DO I J * 5 U.R LOOP CR LOOP ;

134 When you execute the DOUBLING example, an extra number will be
printed after 16384. This is because +LOOP behaves a little differently in
fbForth 2.0.

136 In the definition of COMPOUND , the CR should precede SWAP instead of
LOOP .

137 XX When fbForth 2.0 detects an error, the stack is cleared, but then the con-
tents of BLK and IN are saved on the stack, if LOADing, to assist in locat-
ing the error. The stack may be completely cleared with the word SP! .

161 U/MOD This word is not in fbForth 2.0, but is the same as U/ and can be created
with the following definition:

: U/MOD U/ ;

161 /LOOP This word is not in fbForth 2.0.

162 OCTAL OCTAL does not exist in fbForth 2.0. See p. 163 for definition.

164-5 Numbers in fbForth 2.0 may only be punctuated with periods. Commas,
slashes and other marks are not permitted. Any number containing a
period (.) is considered double-length. In later examples using D. and
UD. , replace all punctuation in the inputs with decimal points. It is
recommended that you not place more than one decimal place in each
number if you want valid output.

166 UD. This word is already defined in fbForth 2.0.

173 D- This word is not in fbForth 2.0, but can be created with the following
definition:

: D- DMINUS D+ ;

173 DNEGATE This word is not in fbForth 2.0, but can be created with the following
definition:

: DENEGATE DMINUS ;

173 DMAX This word is not in fbForth 2.0, but can be created with the following
definition:

: DMAX 2OVER 2OVER D- SWAP DROP 0<

IF 2SWAP ENDIF

2DROP ;

154 Appendix C How fbForth 2.0 differs from Starting FORTH (1st Ed.)

Page Word Changes Required

173 DMIN This word is not in fbForth 2.0, but can be created with the following
definition:

: DMIN 2OVER 2OVER 2SWAP D- SWAP DROP 0<

IF 2SWAP ENDIF

2DROP ;

173 D= This word is not in fbForth 2.0, but can be created with the following
definition:

: D= D- 0= SWAP 0= AND ;

173 D0= This word is not in fbForth 2.0, but can be created with the following
definition:

: D0= 0. D= ;

173 D< This word is not in fbForth 2.0, but can be created with the following
definition:

: D< D- SWAP DROP 0<;

173 DU< This word is not in fbForth 2.0, but can be created with the following
definition:

: DU< ROT SWAP OVER OVER
U<
IF (determined less using high order halves)

DROP DROP DROP DROP 1
ELSE (test if high halves equal)

=
IF (equal so just test low halves)

U<
ELSE (test fails)

DROP DROP 0
ENDIF

ENDIF ;

174 M+ This word is not in fbForth 2.0, but can be created with the following
definition:

: M+ 0 D+ ;

174 M/ This word is different in fbForth 2.0 and can be changed with the
following definition:

: M/ M/ SWAP DROP ;

174 M*/ Not available in fbForth 2.0 because no triple precision arithmetic has
been included. This could be created using either a relatively complicated
colon definition or by using the Assembler included with fbForth 2.0.

Appendix C How fbForth 2.0 differs from Starting FORTH (1st Ed.) 155

Page Word Changes Required

183ff Variables in fbForth 2.0 are required to be initialized at creation, thus the
word VARIABLE takes the top item on the stack and places it into the
variable as its initial value. For example, 12 VARIABLE DATE both
creates the variable DATE and initializes it to 12. If desired, the advanced
user can use the words <BUILDS and DOES> to create a new defining
word, VARIABLE , which has exactly the behavior of VARIABLE as used
in this section. The code to do this is:

: VARIABLE <BUILDS 0 , DOES> ;

193 2VARIABLE This word is not in fbForth 2.0, but can be created with the following
definition:

: 2VARIABLE <BUILDS 0. , , DOES> ;

This definition does not require a number to be on the stack when it is
executed.

193 2! This word is not in fbForth 2.0, but can be created with the following
definition:

: 2! >R R ! R> 2+ ! ;

193 2@ This word is not in fbForth 2.0, but can be created with the following
definition:

: 2@ >R R 2+ @ R> @ ;

193 2CONSTANT This word is not in fbForth 2.0, but can be created with the following
definition:

: 2CONSTANT <BUILDS , , DOES> 2@ ;

This definition does not require a number on the stack.

199 You must place a 0 on the stack before executing VARIABLE COUNTS 10
ALLOT . This, however, initializes only the first element of the array
COUNTS to 0. You must execute either the FILL or ERASE instruction at
the bottom of the page to properly initialize the array.

204 DUMP fbForth 2.0 already has a dump instruction which must be loaded from
the disk. Dumps are always printed in hexadecimal. See Appendix D for
location of DUMP .

207 CREATE The CREATE word of fbForth 2.0 behaves somewhat differently.
Hackers should consult fig-Forth documentation.

216 EXECUTE Because this word operates a little differently in fbForth 2.0, it must be
preceded by the word CFA . The example should read:

' GREET CFA EXECUTE

217 The example illustrating indirect execution must be modified to work in
fbForth 2.0:

' GREET CFA POINTER ! POINTER @ EXECUTE

156 Appendix C How fbForth 2.0 differs from Starting FORTH (1st Ed.)

Page Word Changes Required

218 ['] In fbForth 2.0, this word is unnecessary as the word ' will take the
following word of a definition when used in a definition.

219 NUMBER In fbForth 2.0, NUMBER is always able to convert double precision
numbers.

219 'NUMBER fbForth 2.0 does not use 'NUMBER to locate the NUMBER routine.

220 In fbForth 2.0, the name field is variable length and contains up to 31
characters. Also, the link field precedes the name field in fbForth 2.0.

225 EXIT This word is ;S in fbForth 2.0. ;S is the word compiled by ; so to
create EXIT we might use:

: EXIT [COMPILE] ;S ; IMMEDIATE

225 I In fbForth 2.0, the interpreter pointer is called IP , not I .

232 See Chapter 1 in this fbForth 2.0 Instruction Manual for instructions for
loading elective blocks.

232 RELOAD This instruction is not available in fbForth 2.0.

233 H This word is DP (dictionary pointer) in fbForth 2.0.

235 'S In fbForth 2.0, SP@ is used instead of 'S .

240 See Appendix F in this fbForth 2.0 Instruction Manual for a complete
list of user variables.

240 >IN This word is IN in fbForth 2.0.

245 LOCATE fbForth 2.0 does not support LOCATE .

256 COPY In fbForth 2.0, use the word CPYBLK . CPYBLK is disk resident. See
Appendix D for location and usage.

259 ['] Change the ['] to ' in the bottom example. In fbForth 2.0, ' will
compile the address of the next word in the colon definition.

261 >TYPE Unnecessary in non-multiprogramming systems. Not present in
fbForth 2.0.

265 RND fbForth 2.0 has two random number generators: RND and RNDW . See
Appendix D for descriptions. See also definitions for SEED and
RANDOMIZE .

266 MOVE In fbForth 2.0, MOVE moves u words in memory, not u bytes. Use
CMOVE instead. If you must conform to Starting FORTH (1st Ed.), MOVE
can be redefined:

: MOVE 2/ MOVE ;

266 <CMOVE Not present in fbForth 2.0. Must be created with the Assembler if
required. This word is used only when the source and destination regions
of a move overlap and the destination is higher than the source.

Appendix C How fbForth 2.0 differs from Starting FORTH (1st Ed.) 157

Page Word Changes Required

270 WORD In fbForth 2.0, the word WORD does not leave an address on the stack.

270 TEXT This word’s name conflicts with fbForth 2.0’s Graphics mode word of
the same name. The definition that follows will work, but has a different
name to avoid conflict. It does not check for a 72-character limit:

: TXT PAD 72 BLANKS PAD HERE - 1-

DUP ALLOT MINUS SWAP WORD ALLOT ;

If you want the count to also be stored at PAD, remove the 1- from the
definition. See also, TOKEN and S" .

277 >BINARY This is named (NUMBER) in fbForth 2.0.

277 Because WORD does not leave an address on the stack, it is necessary to
redefine PLUS as follows:

: PLUS 32 WORD HERE NUMBER DROP + ." = " . ;

279 NUMBER This definition of NUMBER is not compatible with fbForth 2.0.

281 -TEXT Not in fbForth 2.0. Use the definition on page 282.

292 fbForth 2.0 uses the word pair <BUILDS … DOES> to define a new
defining word. <BUILDS calls CREATE as part of its function.

297 To create a byte ARRAY in fbForth 2.0:

: ARRAY <BUILDS OVER , * ALLOT

DOES> DUP @ ROT * + + 2+ ;

298 Just a reminder! Don’t forget to define 2* before trying the example at
the bottom of the page. Also, replace the word CREATE with <BUILDS .

301 (DO) This is the runtime behavior of DO just as listed. 2>R is not used,
however.

301 DO The given definition of DO is not compatible with fbForth 2.0.
fbForth 2.0’s definition of DO is much more complex because of
compile-time error checking.

303 (LITERAL) The fbForth 2.0 name for this word is LIT .

306 fbForth 2.0 remains in compilation mode until a ; is typed.

158 Appendix C How fbForth 2.0 differs from Starting FORTH (1st Ed.)

This page left intentionally blank.

Appendix D The fbForth 2.0 Glossary 159

Appendix D The fbForth 2.0 Glossary
fbForth 2.0 words appear in this glossary on the left of the word’s entry line and ordered in the
ASCII collating sequence, displayed as a handy reference at the bottom of each page of this
appendix. If the word is an immediate word, that fact is shown in the middle of the entry line as
“[immediate word]”. The block in FBLOCKS that needs to be loaded to load the word’s
definition is enclosed in “[]” and right-justified on the entry line preceded by some or all of the
description given by executing MENU . The word’s definition can be found in or following that
block. If the word is part of the core system, it is listed as “Resident”. Note: With the exception
of ;ASM and NEXT, , words in the Assembler vocabulary are only referenced in Chapter 9 “The
fbForth 2.0 TMS9900 Assembler”.

The state of the top of the parameter stack (usually referred to simply as “the stack”) before and
after execution of an fbForth 2.0 word is shown schematically as “(before --- after)”, where
“before” and “after” represent 0 or more cells relevant to the fbForth 2.0 word being described
and “---” represents the execution of the word. The topmost, i.e., most accessible, item on the
stack is on the right. These stack effects are usually listed on the second line. However, when an
fbForth 2.0 word is a compiler word, i.e., it can only appear within the definition of another
word, the compilation and runtime stack effects will be shown on the lines beginning the relevant
descriptions.

The stack effects of the return stack will also be shown when the return stack is affected by the
execution of the fbForth 2.0 word. These will be indicated by “R:” following the ‘(’ as in the
following: “(R: n ---)”, which would mean that a 16-bit number n is removed from the top of
the return stack after the word being described is executed.

For the Stack-based String Library, the String Stack effects will be shown similarly as the return
stack effects with “(SS: before --- after)”. See Chapter 14 “The Stack-based String Library” for
details.

A few words expect information from the input stream following the Forth word, which will be
shown after stack effects with “(IS: input)”.

 D.1 Explanation of Some Terms and Abbreviations

When the following terms and abbreviations are part of the stack effects schematic, each before
and after token in the schematic represents 1 cell (16-bits or 2 bytes) on the stack unless
otherwise noted under “Meaning”.

Term/Abbreviation Meaning

$Caddr string constant address
addr, addr1 , … memory address

b byte
col column position
cccc , nnnn , xxxx string representations
cfa code field address

ASCII Collating Sequence: ! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~

160 D.1 Explanation of Some Terms and Abbreviations

Term/Abbreviation Meaning

char ASCII character code
count count (length)
d, d1 , d2 , … signed double-precision numbers (2 cells each)

dotcol, dotcol1 , dotcol2 , … dot column position

dotrow, dotrow1 , dotrow2 , … dot row position

flag Boolean flag
false Boolean false flag (value = 0)
f, f1 , f2 , … floating point numbers (4 cells each)

lfa link field address
n, n1 , n2 , … signed single-precision numbers

nfa name field address
pfa parameter field address
row row position
rem remainder
blk block number
spr sprite number
str string address
true Boolean true flag (value ≠ 0)
tol tolerance limit
u unsigned single-precision number
ud unsigned double-precision number (2 cells)
vaddr VDP address

 D.2 Naming Conventions for Forth Words

This section is an effort to aid you in navigating this glossary, as well as to assist you in
contriving names for your own Forth words.

A few, core Forth words are very short and cryptic because they are used so often:

Word Function

: Begin definition

; End definition

@ Fetch

! Store

, Compile

' Look up

. Print

ASCII Collating Sequence: ! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~

Appendix D The fbForth 2.0 Glossary 161

Words that begin or end with the above word symbols are usually expected to have a similar
function. Here are a few examples:

Word Function

C@ Character fetch

C! Character store

C, Character compile

.BASE Print value in BASE

.S Print stack

D. Double-number print

ASM: Assembly Language Code, begin definition

;ASM End definition, Assembly Language Code

‘ () ’ and ‘ < > ’ surround runtime versions of similarly named words. Here are a few examples:

High-level Word Runtime Version

DO (DO)

LOOP (LOOP)

+LOOP (+LOOP)

-FIND (FIND)

NUMBER (NUMBER)

USEBFL (UB)

CLOAD <CLOAD>

." (.")

‘ > ’, may also mean “greater?”, “to” (sometimes preceded by ‘ - ’ in words inherited from TI
Forth) or “this”. Here are some examples with implied locations in brackets:

Word Function

>R [Parameter stack] to return stack

R> Return stack to [parameter stack]

F->S Floating point (FP) number to parameter stack

DOES> Does this (high-level Forth code that follows this word)

> Greater? (n1 > n2?)

>F To FP number (converts FP number text in input stream and pushes
it to the stack)

>DEG [Parameter stack value (radians)] to degrees

ASCII Collating Sequence: ! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~

162 D.2 Naming Conventions for Forth Words

Word Function

ASM>CODE Assembly language code to hexadecimal machine code

BASE->R Value in BASE to return stack

R->BASE Return stack value to BASE

F> FP greater? (f1 > f2?)

F>R FP number on parameter stack to return stack

‘ < ’, may also mean “less?” or “that”. Here are some examples with implied locations in
brackets:

Word Function

< Less? (n1 < n2?)

<BUILDS That (the word pointed to) builds new words

0< 0 less? (n < 0?)

At the beginning of a word, ‘ ? ’ usually means “query” and may or may not leave a flag on the
parameter stack. Most of the words below are querying for error conditions and will abort with
an error message when such an error condition exists. At the end of a word, you may think of it
as making the word a question.

Word Function

? Query address on stack and print contents

?COMP Query STATE for compilation—abort with error message if not

?CSP Query stack position for same level as start of definition—abort
with error message if not

?ERROR Query flag on stack and issue error number n if false

?EXEC Query STATE for execution—abort with error message if not

?FLERR Query for FP calculation error—abort with error message if so

?KEY Query keyboard for any key—leave 7-bit ASCII value of key or 0
if none

?KEY8 Query keyboard for any key—leave 8-bit value of key or 0 if none

?LOADING Query BLK for whether we are LOADing—abort with error message
if not

?PAIRS Query the two numbers on the stack for identity—abort with error
message if not

?STACK Query stack for overflow or underflow—abort with error message
if either

?TERMINAL Query keyboard for break key—leave true if so; false if not

ASCII Collating Sequence: ! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~

Appendix D The fbForth 2.0 Glossary 163

Word Function

PLAYING? Are we playing a soundlist?—leave a flag on the stack to indicate
whether a soundlist is active

TALKING? Is the Speech Synthesizer talking?—leave a flag on the stack to
indicate whether speech is active

A very good reference for explaining and recommending naming conventions is THINKING
FORTH: A Language and Philosophy for Solving Problems by Leo Brodie (1984, 1994, 2004),
available free online from SourceForge at http://thinking-forth.sourceforge.net/. Of particular
note are:

• Chapter 5 “Implementation: Elements of Forth Style”, p.135—especially, the sections on

◦ “Choosing Names: The Art”, p. 163, and

◦ “Naming Standards: The Science”, p. 167

• Appendix E “Summary of Style Conventions”, p. 283

 D.3 fbForth 2.0 Word Descriptions

! Resident

(n addr ---)

Stores 16 bit-number n at address. Pronounced “store”.

!CSP Resident

(---)

Saves the stack position in user variable CSP . Used as part of compiler security.

Resident

(d1 --- d2)

Converts the rightmost digit of a double number d1 to an ASCII character, which is
placed in a pictured numeric output string built downward from PAD to HERE . The
digit to convert is the remainder from division of d1 by the current radix contained in
BASE . The quotient d2 is maintained for further processing. Used between <# and
#> . See #S , <# and #> . The details of pictured numeric output are shown at <# .

#> Resident

(d --- addr count)

Terminates pictured numeric output conversion by dropping d and leaving the text
address and character count suitable for TYPE , q.v. The details of pictured numeric
output are shown at <# .

ASCII Collating Sequence: ! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~

164 D.3 fbForth 2.0 Word Descriptions

#MOTION Resident

(n ---)

Sets sprite numbers 0 to n – 1 in automotion.

#S Resident

(d1 --- d2)

Generates pictured numeric output as ASCII text at PAD from d1 by executing # until
a zero double number d2 results. Used between <# and #> , q.v. The details of
pictured numeric output are shown at <# .

$" Stack-based String Library [42]

(---) (SS: --- str) (IS: string") “string to string stack”

The word $" takes a string from the input stream and pushes it to the string stack.
The end of the string is indicated by a quotation mark. For example,

$" Hello, World!" ok:0

In this example the string “Hello, world!” is pushed directly to the string stack, thus
becoming the top item on the string stack.

$" is a state-smart word. It can be used in both colon definitions and also directly at
the command line. The correct action will be taken in either case.

In order that the runtime actions of $" may be compiled into a definition if so
desired, the runtime action of this word is encapsulated within the word ($") .
Therefore, if the runtime behavior of this word is to be compiled into another word,
one must compile the word ($") .

$. More Useful Stack Words etc. [41]

(n ---)

Display the top number on the stack as an unsigned hexadecimal number.

$.S Stack-based String Library [42]

(---) (SS: ---)

The word $.S displays a non-destructive string stack dump to the output device. The
length of each string is given, along with the total number of strings on the string
stack. The amount of space allocated to the string stack, the amount of space in use
and the amount of free space is also reported. An example appears above under the
description of REPLACE$.

$CONST Stack-based String Library [42]

(max_len ---) (IS:name) “string constant”

Runtime: (--- $Caddr)

The word $CONST declares a string constant. Declared at compile time, string
constants require a maximum length and a name. For example,

50 $CONST WELCOME ok:0

ASCII Collating Sequence: ! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~

Appendix D The fbForth 2.0 Glossary 165

The above example declares a string with a maximum size of 50 characters. It shall
be referenced in code using the name WELCOME .

A string constant pushes the address of its maximum length field which can be read
with the word MAXLEN$.

' [immediate word] Resident

(--- pfa) (IS: word)

Used in the form:

' nnnn

Searches the dictionary for nnnn and, if found, leaves the parameter field address pfa
of the word. As a compiler directive, ' , because it is an immediate word, executes
in a colon definition to compile the address of a literal, viz., the pfa of the found
word. If the word is not found after a search of CONTEXT and CURRENT , it is echoed
followed by ‘?’ to indicate the error. The stack is then cleared, the contents of IN and
BLK are left on the stack, if LOADing, and QUIT is called. Pronounced “tick”.

([immediate word] Resident

(---) (IS: comment))

(is used in the form:

(cccc)

It starts a comment that will not be compiled if it occurs in a definition. It causes the
interpreter to consume characters from the input stream until a ‘)’ is found or the end
of the input stream (block or TIB) is reached. May occur during execution or in a
colon definition. A blank after the leading parenthesis is required. This is most
useful for commenting Forth source code in blocks.

(+LOOP) Resident

(n ---)

The runtime procedure compiled by +LOOP , which adds n to the loop index and then
tests for loop completion. See +LOOP .

(.") Resident

(---)

The runtime procedure, compiled by ." ,which transmits the in-line text that follows
it to the selected output device. See ." .

(;CODE) Resident

(---)

The runtime procedure, compiled by DOES>ASM: , DOES>CODE: and ;CODE
(execution mode, for TI Forth compatibility), that rewrites the code field of the most
recently defined word to point to the machine code sequence following DOES>ASM: ,
DOES>CODE: or ;CODE . See DOES>ASM: , DOES>CODE: and ;CODE for more
details.

ASCII Collating Sequence: ! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~

166 D.3 fbForth 2.0 Word Descriptions

(ABORT) Resident

(---)

Executes after an error when WARNING < 0. Normally, WARNING = 1. (ABORT)
normally executes ABORT , but may be redirected (with care!) to execute a user’s
alternative procedure. It is defined as

: (ABORT) ABORT ;

If you wished to have (ABORT) execute your error procedure, say MY_ERROR_PROC ,
you would need to replace the cfa of ABORT in the definition of (ABORT) with the cfa
of MY_ERROR_PROC . Fortunately, this is easy to do! The cfa of ABORT sits in the
parameter field of (ABORT) , the address pfa of which is what ticking (ABORT) gives
you. You can verify this with the following code:

HEX ok:0

' (ABORT) @ U. 6AAC ok:0

' ABORT CFA U. 6AAC ok:0

The second line above ticks (ABORT) , fetches the resulting pfa’s contents and prints
what should be the cfa of ABORT . The third line above ticks ABORT , gets its cfa and
prints it. As you can see, they are, indeed, the same address.

Now, to install your error procedure, simply get its cfa and stash it in the parameter
field of (ABORT) as follows:

' MY_ERROR_PROC CFA ok:1

' (ABORT) ! ok:0

To get your error procedure to run at the next error, set WARNING to a negative
number as below:

-1 WARNING ! ok:0

To re-instate normal fbForth 2.0 error handling, you only need to store a positive
number in WARNING . You can restore the default action of (ABORT) with the
following Forth code:

' ABORT CFA ok:1

' (ABORT) ! ok:0

(DO) Resident

(---)

The runtime procedure compiled by DO , which moves the loop control parameters to
the return stack. See DO .

(DOES>) Resident

(---)

The runtime procedure compiled by DOES> .

(FIND) Resident

(addr nfa --- false | pfa b true)

Searches the dictionary starting at the name field address nfa, looking for a match to

ASCII Collating Sequence: ! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~

Appendix D The fbForth 2.0 Glossary 167

the text at addr. The addresses, addr and nfa, both point to the length byte of packed
character strings (see footnote 5 on page 22). Returns the parameter field address
pfa, length byte b of name field, and true for a match. If no match is found, only
false is left. [Note: See Chapter 12 about the length byte of a name field.]

(LINE) Resident

(n blk --- addr count)

Converts the line number n and the Forth block number blk to the disk buffer address
addr containing the data and the number count of characters. If the block is not in a
block buffer, it is loaded from the current blocks file. If count is 64, the full-line text
length of the block is indicated.

(LOOP) Resident

(---)

The runtime procedure compiled by LOOP , which increments the loop index and tests
for loop completion. See LOOP .

(NUMBER) Resident

(d1 addr1 --- d2 addr2)

The double number d1 should be 0, i.e., the stack should contain two 16-bit zeroes.
The address addr1 must point to the packed character string of the ASCII text to be
converted to a double number, which will be left as d2. The conversion begins at
addr1 + 1 with respect to the current radix in BASE . The new value is accumulated
with double number d1 = 0 as the initial value. If a decimal point is encountered in
the string, DPL is updated with the number of digits to the right of the decimal point.
The address of the first unconvertible digit is addr2. (NUMBER) is used by NUMBER .

(OF) Resident

(---)

The run time procedure compiled by OF .

(UB) Resident

(addr ---)

Runtime routine compiled or executed by USEBFL that changes the current blocks
file to the filename as a packed character string (see footnote 5 on page 22) pointed to
by addr.

* Resident

(n1 n2 --- n3)

Leaves the signed product of two signed numbers.

*/ Resident

(n1 n2 n3 --- quot)

Leaves the quotient quot of (n1 * n2) / n3, where all are signed numbers. Retention of
an intermediate signed 32-bit product permits greater accuracy than would be
available with the sequence :

ASCII Collating Sequence: ! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~

168 D.3 fbForth 2.0 Word Descriptions

n1 n2 * n3 /

*/ is based on M/ , which uses user variable S|F , q.v., to determine whether
symmetric (the default) or floored division is used. See Chapter 18 “Signed Integer
Division” for more details.

*/MOD Resident

(n1 n2 n3 --- rem quot)

Leaves the quotient quot and remainder rem of the operation (n1 * n2) / n3. An
intermediate signed 32-bit product is used just as for */ . In fact, */MOD is used by
*/ . */MOD is based on M/ , which uses user variable S|F , q.v., to determine
whether symmetric (the default) or floored division is used. See Chapter 18 “Signed
Integer Division” for more details.

+ Resident

(n1 n2 --- n3)

Leaves the sum of n1 + n2 as n3.

+! Resident

(n addr ---)

Adds n to the value at the address. Pronounced “plus store”.

+$ Stack-based String Library [42]

(---) (SS: str1 str2 – str1& str2) “concatenate strings”

The word +$ replaces the top two strings on the string stack with their concatenated
equivalent. For example,

$" red" $" blue" +$ ok:0

At this point, “red” and “blue” have been removed from the string stack. The
topmost string on the string stack now has the value “redblue”. Note that the topmost
string goes to the right of the newly concatenated string.

+- Resident

(n1 n2 --- n3)

Apply the sign of n2 to n1, which is left as n3.

+BUF Resident

(addr1 --- addr2 flag)

Advance the disk buffer address addr1 to the address of the next buffer addr2.
Boolean flag is false when addr2 is the buffer presently pointed to by user variable
PREV .

+LOOP [immediate word] Resident

Used in a colon definition in the form:

 DO … n +LOOP

ASCII Collating Sequence: ! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~

Appendix D The fbForth 2.0 Glossary 169

Compile time: (addr 3 ---)

+LOOP compiles the runtime word (+LOOP) and the branch offset computed from
HERE to the address addr left on the stack by DO . The value 3 is used for compile-
time error checking.

Runtime: (n ---)

+LOOP selectively controls branching back to the corresponding DO based on n, the
loop index and the loop limit. The signed increment n is added to the index and the
total compared to the limit. The branch back to DO occurs until the new index is
equal to or greater than the limit (n > 0), or until the new index is equal to or less than
the limit (n < 0). Upon exiting the loop, the parameters are discarded and execution
continues ahead.

, Resident

(n ---)

Store n into the next available dictionary memory cell, advancing the dictionary
pointer. Pronounced “comma”.

- Resident

(n1 n2 --- n3)

Leave the difference n3 of n1 – n2.

--> [immediate word] Resident

(---)

Continues interpretation with the next Forth block in the current blocks file. --> can
only be used while loading blocks. Pronounced “next block”.

-DUP Resident

(n1 --- n1 | n1 n1)

Duplicate n1 only if it is non-zero. This is usually used to copy a value just before
IF , to eliminate the need for an ELSE clause to drop a DUPed 0.

-FIND Resident

(--- false | pfa len true) (IS: word)

Accepts the next text word (delimited by blanks) in the input stream to HERE as a
packed character string (see footnote 5 on page 22), searches the CONTEXT and then
CURRENT vocabularies for a matching entry. If found, the dictionary entry’s
parameter field address pfa, its length byte len and true are left. Otherwise, only
false is left. [Note: See Chapter 12 about the length byte.]

-ROT More Useful Stack Words etc. [41]

(n1 n2 n3 --- n3 n1 n2)

Rotate right the top three numbers on the stack, resulting in the top number on the
bottom.

ASCII Collating Sequence: ! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~

170 D.3 fbForth 2.0 Word Descriptions

-ROT$ Stack-based String Library [42]

(---) (SS: str1 str2 str3 --- str3 str1 str2) “rotate strings”

The word –ROT$ rotates the top three strings to the right. The top string prior to the
execution of –ROT$ moves to the third position. See Chapter14 for implementation
details regarding stack space limitations.

-TRAILING Resident

(addr n1 --- addr n2)

Adjusts the character count n1 of a character string at addr to suppress the output of
trailing blanks by TYPE , i.e., the characters at addr + n2 to addr + n1 are blanks. If
the character string is a packed character string (see footnote on page), addr points to
the first character after the length byte. -TRAILING starts at the last character and
steps to the beginning of the string as it looks for trailing blanks, decrementing n1

until a non-blank character is encountered. At that point, n1 is replaced with n2. The
output parameters of COUNT are suitable input parameters for -TRAILING .

. Resident

(n ---)

Prints a number from a signed 16-bit two’s complement value n, converted according
to the numeric base stored in BASE . A trailing blank follows. Pronounced “dot”.

." [immediate word] Resident

(---) (IS: string")

Used in the form:

." cccc"

Compiles an in-line string cccc (delimited by the trailing ") with an execution
procedure to transmit the text to the selected output device. If executed outside a
definition, ." will immediately print the text until the final " . See (.") .

.$ Stack-based String Library [42]

(---) (SS: str ---) “display string”

The word .$ pops the topmost string from the string stack and displays it. For
example,

$" Hello, World!" .$ Hello, World! oK:0

.$CONST Stack-based String Library [42]

($Caddr ---) “display string constant”

Given the address of a string constant on the data stack the word .$CONST shall
display the string. For example,

50 $CONST WELCOME ok:0
WELCOME :=" Hello and welcome!" ok:0
WELCOME .$CONST CR
Hello and welcome! ok:0

ASCII Collating Sequence: ! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~

Appendix D The fbForth 2.0 Glossary 171

.BASE Resident

(--- n)

Print the decimal value n of the current radix (number base).

.LINE Resident

(n blk ---)

Print on the terminal device a line of text from the current blocks file corresponding
to the line number n of block number blk. Trailing blanks are suppressed.

.R Resident

(n1 n2 ---)

Prints the number n1 right aligned in a field whose width is n2. No following blank is
printed.

.S Resident

(---)

Prints the entire contents of the parameter stack as unsigned numbers in the current
BASE . The bottom of the stack is shown by an initial ‘|’.

/ Resident

(n1 n2 --- n3)

Leaves the quotient n3 of n1 / n2. / is based on M/ , which uses user variable S|F ,
q.v., to determine whether symmetric (the default) or floored division is used. See
Chapter 18 “Signed Integer Division” for more details.

/MOD Resident

(n1 n2 --- rem quot)

Leaves the remainder rem and signed quotient quot of n1 / n2. The remainder has the
sign of the dividend. /MOD is based on M/ , which uses user variable S|F , q.v., to
determine whether symmetric (the default) or floored division is used. See Chapter
18 “Signed Integer Division” for more details.

0 1 2 3 Resident

(--- n)

These small numbers are used so often that it is useful to define them by name in the
dictionary as constants. Doing so saves compile time because the interpreter searches
the dictionary for a match before it decides whether it is a number. Also, numbers,
otherwise, require two extra bytes of dictionary storage when used in definitions.

0< Resident

(n --- flag)

Leaves a true flag if the number n is less than zero (negative). Otherwise, 0< leaves a
false flag.

ASCII Collating Sequence: ! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~

172 D.3 fbForth 2.0 Word Descriptions

0= Resident

(n --- flag)

Leaves a true flag if the number is equal to zero. Otherwise, 0= leaves a false flag.

0> Resident

(n --- flag)

Leaves a true flag if the number is greater than zero (positive). Otherwise, 0> leaves
a false flag.

0BRANCH Resident

(flag ---)

The runtime procedure to conditionally branch. If flag is false (zero), the following
in-line parameter is added to the interpretive pointer to branch ahead or back.
Compiled by IF , UNTIL , END and WHILE .

1+ Resident

(n1 --- n2)

Increments n1 by 1.

1– Resident

(n1 --- n2)

Decrements n1 by 1.

2+ Resident

(n1 --- n2)

Leaves n1 incremented by 2 as n2.

2– Resident

(n1 --- n2)

Leaves n1 decremented by 2 as n2.

2DROP More Useful Stack Words etc. [41]

(n1 n2 ---)

Drop the top two numbers from the stack.

2DUP More Useful Stack Words etc. [41]

(n1 n2 --- n1 n2 n1 n2)

Duplicate the top two numbers on the stack.

: [immediate word] Resident

(---) (IS: <new name> <Forth code> ;)

Used in the form, called a colon definition:

: cccc … ;

ASCII Collating Sequence: ! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~

Appendix D The fbForth 2.0 Glossary 173

Creates a dictionary entry defining cccc as equivalent to the sequence of Forth word
definitions in ‘...’ until the next ; , DOES>ASM: or DOES>CODE: . The compiling
process is done by the text interpreter as long as STATE is non-zero. Other details are
that the CONTEXT vocabulary is set to the CURRENT vocabulary and that words with
the precedence bit (see § 12.2 “Name Field”) set are executed rather than being
compiled.

If you wish to FORGET an unfinished definition, the word likely will not be found. If
it is the last definition attempted, you can make it findable by executing SMUDGE and
then FORGETting it.

: (traceable) [immediate word] TRACE — Colon Definition Tracing [23]

(---) (IS: <new name> <Forth code> ;)

This is an alternate definition of : that adds the capability to colon definitions of
being traced when they are executed. When a colon definition is compiled under the
TRACE option, tracing output may be turned on with TRON and off with TROFF prior
to executing the word so defined. After TRON is executed, each time the word is
executed its name will be output along with the contents of the stack. See TRACE ,
UNTRACE , TRON and TROFF .

:=" Stack-based String Library [42]

($Caddr ---) (IS:string") “assign string constant”

Given the address of a string constant on the data stack, the word :=" initializes the
string constant with the string from the input stream. For example,

50 $CONST WELCOME ok:0
WELCOME :=" Hello and welcome!" ok:0

; [immediate word] Resident

(---)

Terminates a colon definition and stops further compilation. Compiles the runtime
;S .

;ASM Resident

(---)

;ASM should be paired with ASM: to clearly surround assembly code:

ASM: <new word> <assembly mnemonics> ;ASM

;ASM puts 045Fh at HERE and advances HERE . This machine code for ALC, B
*NEXT or B *R15, branches to the inner interpreter to fetch the next word to be
executed. See Chapter 9 “The fbForth 2.0 TMS9900 Assembler” for more
information. See also ASM: .

;CODE [immediate word] Resident

([] | C0DEh ---)

Only if compiling: (IS: [<alc>|<mc> , [<mc> ,] ...] NEXT,) to maintain
compatibility with TI Forth.

ASCII Collating Sequence: ! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~

174 D.3 fbForth 2.0 Word Descriptions

;CODE is the terminator for CODE: and for DOES>CODE: . CODE: defines a new
word cccc with machine code contents that do not use , to compile them. The
following ALC quadruples the value on the stack by double addition:

ASM: QUAD (n -- 4n)
 *SP *SP A,
 *SP *SP A,
;ASM

The above code can be re-stated in machine code without requiring the TMS9900
Assembler:

HEX CODE: QUAD A659 A659 ;CODE

With a very long definition, using CODE: cccc … ;CODE is significantly faster and
is much clearer to read regardless of the code’s length.

The same situation obtains for DOES>CODE: , q.v. for more details. The following
code

: cccc <BUILDS … DOES>CODE: <MC only> ;CODE

is the machine-code equivalent of

: cccc <BUILDS … DOES>ASM: <ALC only> ;ASM

;S Resident

(---)

Stops interpretation of a Forth block. ;S is also the runtime word compiled at the
end of a colon definition, which returns execution to the calling procedure.

< Resident

(n1 n2 --- flag)

Leaves a true flag if n1 is less than n2. Otherwise, < leaves a false flag.

<# Resident

(---)

Sets up for pictured numeric output formatting using the words, <# , # , HOLD , #S ,
SIGN and #> . <# initializes HLD with PAD . HLD is decremented by # via HOLD for
each successive digit converted. A few format examples follow:

<# #S #> converts all digits.
<# #S SIGN #> converts all digits with a preceding sign.
<# # # #S #> converts at least 3 digits with leading zeroes.
<# # # 46 HOLD #S #> converts all digits with a dot before last 2 digits.

Though <# requires no input parameters, you should provide the parameters on the
stack that are required by all of the formatting words between <# and #> . At the
very least, this is the double number you wish to convert. DABS should usually be
executed prior to <# because <# … #> will not properly convert negative numbers.
If you wish to include a sign in the output, a signed number should be pushed to the
stack before the double number to be converted.

ASCII Collating Sequence: ! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~

Appendix D The fbForth 2.0 Glossary 175

The conversion is done on a 31-bit (positive) double number producing text at PAD
(working downward toward HERE), eventually suitable for output by TYPE . The
picture template between <# and #> represents the output picture from right to left,
i.e., the rightmost digit is processed first. The following is an example of generalized
output from a double number on the stack that may be positive or negative:

SWAP OVER DABS <# #S SIGN #> TYPE

In the example above, SWAP puts the high-order cell, which contains the sign bit, on
the bottom; OVER copies it back to its proper place on top, leaving 3 cells (n d) on
the stack; and DABS forces d positive. This arrangement is what is expected by
SIGN .

Important note: You should not execute words that change HERE or PAD until after
you have finished formatting the number and retrieving the converted output. See # ,
#S , SIGN , #> , HLD and HOLD for more information.

<> More Useful Stack Words etc. [41]

(n1 n2 --- flag)

Result flag is true (1) if n1 ≠ n2 and false (0) otherwise.

<BUILDS Resident

(---)

It is used within a colon-definition to build a new defining word:

: cccc <BUILDS … DOES> … ; or
: cccc <BUILDS … DOES>ASM: … ;ASM or
: cccc <BUILDS … DOES>CODE: … ;CODE

Each time cccc is executed, <BUILDS defines a new word with a high-level
(DOES>) or machine-code (DOES>ASM: or DOES>CODE:) execution procedure.
Executing cccc in the form:

cccc nnnn

uses <BUILDS to create a dictionary entry for nnnn . For the definition with DOES> ,
when nnnn is later executed, it has the parameter field address pfa on the stack and
executes the words after DOES> in cccc . For the definition with DOES>ASM: or
DOES>CODE: , when nnnn is later executed, it only executes the words after
DOES>ASM: or DOES>CODE: in cccc , but without the pfa of nnnn on the stack.
<BUILDS allows runtime procedures to be written in high-level code with DOES> , in
assembler with DOES>ASM: or in machine code with DOES>CODE: .

<BUILDS is simply defined as

: <BUILDS CREATE SMUDGE ;

<CLOAD> Resident

(---)

The runtime procedure compiled by CLOAD .

ASCII Collating Sequence: ! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~

176 D.3 fbForth 2.0 Word Descriptions

= Resident

(n1 n2 --- flag)

Leaves a true flag if n1 = n2. Otherwise, it leaves a false flag.

=CELLS Resident

(addr1 --- addr1 | addr2)

This instruction expects an address or an offset to be on the stack. If this number is
odd, it is incremented by 1 to put it on the next even word boundary. Otherwise, it
remains unchanged.

> Resident

(n1 n2 --- flag)

Leaves a true flag if n1 > n2. Otherwise, it leaves a false flag.

>$ Stack-based String Library [42]

($Caddr ---) (SS: --- str) “to string stack”

Given the address of a string constant on the data stack, the word >$ copies the
contents of the string to the string stack where it can be manipulated. For example,

50 $CONST WELCOME ok:0
WELCOME :=" Hello and welcome!" ok:0
WELCOME >$ ok:0

>$CONST Stack-based String Library [42]

($Caddr ---) (SS: str ---) “to string constant”

The word >$CONST takes the topmost string from the string stack and moves it into
the string constant whose address is on the data stack. For example,

4 $CONST COLOR ok:0
$" red" COLOR >$CONST ok:0

At this point, the string constant COLOR has the value “red”. To verify, display the
string using .$CONST as follows:

COLOR .$CONST red ok:0

>DEG Resident

(f1 --- f2)

Converts an 8-byte floating point number f1 from radians to f2 degrees.

>F [immediate word] Resident

(--- f) (IS: <fp number string>)

This instruction expects to be followed by a string representing a legitimate floating
point number terminated by a space. This string is converted into floating point and
placed on the stack. This instruction can be used in colon definitions or directly from
the keyboard.

ASCII Collating Sequence: ! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~

Appendix D The fbForth 2.0 Glossary 177

>MAP Resident

(bank addr ---)

This word is ported from TurboForth1 code courtesy of Mark Wills.

If a SAMS card is present, >MAP maps memory bank bank to address addr.

Address addr should be a valid address on a 4 KiB boundary, viz., 2000h, 3000h,
A000h, B000h, C000h, D000h, E000h or F000h. Bank bank should be a number
between 0 and FFh.

S0&TIB! , q.v., should be used to change S0 and TIB both to EFA0h or DFA0h
(exactly 4 KiB or 8 KiB [1 or 2 SAMS page(s)] lower than the default FFA0h), thus
allowing the use of F000h and/or E000h with impunity!

When a SAMS memory expansion card is installed, the 32 KiB of CPU RAM is
actually taken from the SAMS memory. At startup, fbForth 2.0 reserves the
following banks of SAMS memory for the “standard” 32 KiB RAM:

Bank
4 KiB

Boundary

F8h 2000h

F9h 3000h

FAh A000h

FBh B000h

FCh C000h

FDh D000h

FEh E000h

FFh F000h

As can be seen from the above table, fbForth assumes a 1024 KiB SAMS memory
card, so fbForth 2.0 is not compatible with 256 KiB AMS cards.

Lower RAM 2000h – 3FFFh is reserved by fbForth 2.0 for four block buffers, low-
level support, system variables and the return stack. Therefore, extreme care should
be taken when paging banks F8h and F9h out of 2000h and 3000h, respectively. The
same care should be taken with upper RAM when paging banks FAh and FFh out of
A000h (start of User Dictionary) and F000h (TIB and base of parameter stack),
respectively.

Because the RAM portion of the dictionary grows up from A030h and the parameter
stack grows down from FFA0h, extreme care must be taken mapping SAMS memory
if not using S0&TIB! . It is probably advisable to limit SAMS mapping to one or
two 4 KiB window(s) at F000h and/or E000h. If E000h is used, the space available
for the stack and user dictionary is ~16 KiB, down from the ~24 KiB available before
moving the stack base.

ASCII Collating Sequence: ! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~

178 D.3 fbForth 2.0 Word Descriptions

>R Resident

(n ---) (R: --- n)

Removes a number from the parameter stack and place as the most accessible number
on the return stack. Use should be balanced with R> in the same definition.

>RAD Resident

(f1 --- f2)

Converts an 8-byte floating point number f1 from degrees to f2 radians.

? Resident

(addr ---)

Prints the value contained at address addr in free format according to the current
radix stored in BASE . This word is short for the two words, @ . .

?COMP Resident

(---)

This word is typically used in the definitions of compile-only words to insure the
word containing it is being used in a definition. When ?COMP is executed in other
than compile mode, it displays the word just interpreted with a ‘?’, issues the error
message, “compilation only”, clears the stack, echoes the word causing the error,
leaves the contents of IN and BLK on the stack, if LOADing, and executes QUIT , e.g.,

9 0 DO I . LOOP DO ? compilation only
Though LOOP is also a compile-only word, DO is the first one encountered and the
one that triggers the above error.

?CSP Resident

(---)

This word is used in the definitions of ; , DOES>ASM: and DOES>CODE: to insure
that the stack position at the end of the definition is at the same height as when it was
started with : , which stores the stack pointer in CSP . The error condition typically
occurs with unbalanced conditionals. Whichever terminating word tested the stack
height will be displayed followed by a ‘?’ and “definition not finished”, e.g.,

: XXXX IF ; ; ? definition not finished

?ERROR Resident

(flag n ---)

Issues an error message corresponding to error number n if the Boolean flag is true.
?ERROR is the word that all the error-checking words in fbForth 2.0 execute to
actually check for an error and to display the error message. It is defined as

: ?ERROR SWAP IF ERROR ELSE DROP THEN ;
?EXEC Resident

(---)

This word is used in the definitions of : , CODE: , ASM: and most of the words in the
ASSEMBLER vocabulary to insure those words are executing and not being used in a

ASCII Collating Sequence: ! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~

Appendix D The fbForth 2.0 Glossary 179

definition. ?EXEC issues the error message, “execution only”, as in
: XXXX : … ; : ? execution only

?FLERR Resident

(---)

Determines if the most recently executed floating-point (FP) operation resulted in an
error. This word will give valid information any time before executing another FP
operation clears the FP error location at 8354h. ?FLERR issues the error message,
“floating point error”, upon finding an error. The nature of the floating-point error
may be ascertained by executing FLERR , q.v., to get the FP error number and cross-
referencing the code in the error table in § 7.14 “Floating Point Error Codes”.

?KEY Resident

(--- char)

Scans the keyboard for input. If no key is pressed, a 0 is left on the stack. Otherwise,
the 7-bit ASCII code of the key pressed is left on the stack.

?KEY8 Resident

(--- n)

Scans the keyboard for input. If no key is pressed, a 0 is left on the stack. Otherwise,
the 8-bit code of the key pressed is left on the stack.

?LOADING Resident

(---)

This word is used in the definition of --> to insure that fbForth 2.0 is loading from
the current blocks file rather than executing on the command line. ?LOADING issues
error message, “use only when loading”, if not loading as in

--> --> ? use only when loading
?PAIRS Resident

(n1 n2 ---)

Issue the error message, “conditionals not paired”, if n1 does not equal n2. The
message indicates that compiled conditionals do not match, such as when a DO has
been left without a LOOP , an IF has no corresponding ENDIF or THEN , etc.

?STACK Resident

(---)

INTERPRET uses ?STACK to check whether the parameter stack is out of bounds after
processing a word or number. If the top of the stack is lower than its base, “empty
stack” will be displayed. If the stack has run into the output buffer at PAD in the
other direction, “full stack” will be displayed. ?STACK is defined as

: ?STACK
SP@ S0 @ SWAP U< 1 ?ERROR
SP@ HERE 128 + U< 7 ?ERROR ;

ASCII Collating Sequence: ! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~

180 D.3 fbForth 2.0 Word Descriptions

?TERMINAL Resident

(--- flag)

Scans the terminal keyboard for actuation of the break key (<BREAK>). A true flag
indicates actuation. On the TI-99/4A, <FCTN+4>, <BREAK> and <CLEAR> are all the
same key.

@ Resident

(addr --- n)

Leave the 16-bit contents n of addr.

A$$M TMS9900 Assembler [21]

(---)

This word is compiled into the FORTH vocabulary and marks the end of the
ASSEMBLER vocabulary. It is used by CLOAD to determine whether the TMS9900
Assembler has been loaded.

ABORT Resident

(---)

ABORT is fbForth 2.0’s warm start. It clears the stacks, sets both CONTEXT and
CURRENT to the FORTH vocabulary, enters the execution state and, after printing
“fbForth 2.0”, executes INTERPRET to get user input from the terminal.

ABS Resident

(n1 --- n2)

Leaves the absolute value of n1 as n2.

AGAIN [immediate word] Resident

Used in a colon definition in the form:

BEGIN … AGAIN

Compile time: (addr 1 ---)

AGAIN compiles BRANCH with an offset from HERE to addr, which it copies to the
space reserved for it at addr. The value 1 is used for compile-time error checking.

Runtime: (---)

AGAIN forces execution to return to the corresponding BEGIN . There is no effect on
the stack. Execution cannot leave the loop unless R> DROP is executed one level
below by some word in the loop.

ALIGN Resident

(---)

ALIGN insures that HERE is on an even address boundary. Use of C, is one way
HERE can land on an odd address boundary. CREATE uses ALIGN before installing
the header for a new word definition. Align is very similar to =CELLS except that it
neither expects nor leaves anything on the stack.

ASCII Collating Sequence: ! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~

Appendix D The fbForth 2.0 Glossary 181

ALLOT Resident

(n ---)

Adds the signed number n to the dictionary pointer DP , which moves HERE by n
bytes. It has the effect of reserving n bytes of dictionary space if it is positive and
moving HERE backwards to reclaim memory if it is negative (be careful!).

ALTIN Resident

(--- addr)

A user variable whose value is 0 if input is coming from the keyboard or a pointer to
the VDP address where the PAB (Peripheral Access Block) for the alternate input
device is located if its value is non-zero.

ALTOUT Resident

(--- addr)

A user variable whose value is 0, if output is going to the monitor, or a pointer to the
VDP address where the PAB (Peripheral Access Block) for the alternate output
device is located if its value is non-zero.

AND Resident

(n1 n2 --- n3)

Leave the bitwise logical AND of n1 and n2 as n3.

APPND Resident

(---)

Assigns the APPEND attribute to the file whose PAB (Peripheral Access Block) is
pointed to by PAB-ADDR .

ASCII [immediate word] Resident

(--- ascii) (IS:token)

Leaves on the stack the ASCII value of the first character of the next token in the
input stream:

ASCII G . 71 ok:0

ASM: Resident

(---) (IS: <new word> <alc> ;ASM)

ASM: opens an ASM: cccc … ;ASM word definition that allows the programmer to
write the body of the word in Assembly Language. To do so, requires the
fbForth 2.0 TMS9900 Assembler first be loaded from FBLOCKS. Typing MENU
will reveal the block number to load the Assembler. It is used as follows:

ASM: <new word> <assembly mnemonics> ;ASM

See Chapter 9 “The fbForth 2.0 TMS9900 Assembler” for more information. See
also ;ASM .

ASCII Collating Sequence: ! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~

182 D.3 fbForth 2.0 Word Descriptions

ASM>CODE ASM>CODE -- Code Output Utility

(---) (IS:word DSKn.file)

ASM>CODE appends to DSKn.file the hexadecimal machine code of a Forth word
written in ALC (Assembly Language Code) in CODE: newword … ;CODE format,
where ‘…’ represents the machine code in text. This is useful for loading words
defined in ALC without the need for loading the fbForth TMS9900 Assembler from
FBLOCKS. Please note that ASM>CODE should not be used for words in the resident
dictionary because word entries in the resident dictionary are in an unconventional,
non-contiguous format.

ASM>CODE first checks to insure that word is a word defined in ALC. If it is not or it
does not exist, ASM>CODE quits with an error message to that effect. If it is an ALC
word, ASM>CODE attempts to open the file DSKn.file in Append mode. Failing that,
DSKn.file is created and opened in Output mode.

As an example you might assemble the word LDCR , the ALC for which is listed in
Appendix H “Assembly Source for CODEd Words”, and then run the following
code:

ASM>CODE LDCR DSK1.CRUWORDS

Examining the contents of DSK1.CRUWORDS would reveal the same code as
shown in Block #5 of FBLOCKS (17JUN2016 and later).

If you are using the TI-99/4A emulator, Classic99 (www.HarmlessLion.com), in
Microsoft Windows, you can use the Windows clipboard as the file CLIP as follows:

ASM>CODE LDCR CLIP

See Chapter 9 “The fbForth 2.0 TMS9900 Assembler” in the manual for additional
information.

ASSEMBLER [immediate word] Resident

(---)

The name of the fbForth 2.0 Assembler vocabulary. Execution makes ASSEMBLER
the CONTEXT vocabulary. Because ASSEMBLER is immediate, it will execute during
the creation of a colon definition to select this vocabulary at compile time. See
VOCABULARY .

ATN Resident

(f1 --- f2)

Calculates the arctangent in radians of f1 leaving the floating point result f2 on the
stack.

B/BUF Resident

(--- 1024)

This constant leaves the number of bytes n per disk buffer (always 1024 in
fbForth 2.0), the byte count read from the current blocks file by BLOCK . It is
included for backward compatibility with TI Forth

ASCII Collating Sequence: ! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~

Appendix D The fbForth 2.0 Glossary 183

B/SCR Resident

(--- 1)

This constant always leaves 1 on the stack. It is included for backward compatibility
with TI Forth, where it is the number of blocks per editing screen. By convention, an
editing screen is 1024 bytes organized as 16 lines of 64 characters each.

BACK Resident

(addr ---)

Calculates the backward branch offset from HERE to addr and compile into the next
available dictionary memory address. Used by LOOP , +LOOP , UNTIL and AGAIN to
calculate the distance back to the beginning of the loop.

BANK@ Resident

(addr n1 --- n2)

Returns on the stack the contents n2 of the cell at address addr in bank n1. If the bank
number does not exist, the returned value will be from bank 0. If the address is in
CPU RAM space, the returned value will be from there.

BANKC@ Resident

(addr n --- b)

Returns on the stack the contents b of the byte at address addr in bank n. See
BANK@ .

BASE Resident

(--- addr)

A user variable containing the current radix or number base used for input and output
conversion.

BASE->R Resident

(---)

Places the current radix on the return stack. Caution must be exercised when using
BASE->R and R->BASE with CLOAD as these will cause the return stack to be
polluted if a LOAD is aborted and the BASE->R is not balanced by a R->BASE at
execution time. See R->BASE .

BEEP Resident

(---)

Produces the sound associated with correct input or prompting.

BEGIN [immediate word] Resident

Occurs in a colon-definition in the form:

BEGIN … UNTIL or BEGIN … END
BEGIN … AGAIN
BEGIN … WHILE … REPEAT

ASCII Collating Sequence: ! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~

184 D.3 fbForth 2.0 Word Descriptions

Compile time: (--- addr 1)

BEGIN leaves its return address addr for branching calculation and storage by
UNTIL , END , AGAIN and REPEAT and a 1 for compiler error checking.

Runtime: (---)

BEGIN marks the start of a sequence that may be repetitively executed. It serves as a
return point from the corresponding UNTIL , AGAIN or REPEAT . When executing
UNTIL , a return to BEGIN will occur if the top of the stack is false; for AGAIN and
REPEAT a return to BEGIN always occurs.

BFLNAM Resident

(flag --- [] | addr)

Helper routine that gets a blocks filename from the input stream into PAD or HERE
and passes a name pointer (addr) if flag is true (used on command line), but passes
nothing if flag is false (addr is compiled by SLIT in a colon definition).

BL Resident

(--- char)

A constant that leaves the ASCII value 32 (20h) for “blank”.

BLANKS Resident

(addr count ---)

Fills an area of memory beginning at addr with count blanks.

BLK Resident

(--- addr)

A user variable containing the block number being interpreted. If zero, input is being
taken from the terminal input buffer.

BLKRW Resident

([bfnaddr | #blks bfnaddr | bufaddr blk#] opcode --- flag)

Blocks I/O utility routine called by DO_BRW . Addresses passed point to blocks file
name (bfnaddr) and block RAM buffer (bufaddr). The number of items required on
the stack depends on the opcode (passed by the corresponding command) as follows:

(bfnaddr -14 --- flag) passed by USEBFL
(#blks bfnaddr -16 --- flag) passed by MKBFL
(bufaddr blk# -18 --- flag) passed by RBLK
(bufaddr blk# -20 --- flag) passed by WBLK

BLOAD Resident

(blk --- flag)

Loads the binary image at blk which was created by BSAVE . BLOAD returns a true
flag (1) if the load was not successful and a false flag (0) if the load was successful.

ASCII Collating Sequence: ! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~

Appendix D The fbForth 2.0 Glossary 185

BLOCK Resident

(n --- addr)

Leaves the memory address of the block buffer containing block n. If the block is not
already in memory, it is transferred from the current blocks file to whichever buffer
was least recently written. If the block occupying that buffer has been marked as
updated, it is written to the current blocks file before block n is read into the buffer.
See also BUFFER , R/W , UPDATE and FLUSH .

BOOT Resident

(n | []---)

This word's functionality has been changed from the original TI Forth functionality,
which essentially was a continuation of COLD . It now simply restarts the system as
though the user had just chosen the second or third option on the cartridge menu
screen. It expects the default text mode n on the stack. The value n is forced to 0 or
1 for TEXT80 or TEXT , respectively. BOOT may be executed with nothing on the
stack, in which case TEXT is used.

A key may be held down to select the boot disk number or <ENTER> may be held
down to prevent loading of FBLOCKS.

BPB Resident

(--- vaddr)

Gets the offset in VRAM from the fbForth 2.0 record buffer (in DISK_BUF) for
blocks file PABs from user variable 3Eh, adds the offset to the contents of DISK_BUF
and pushes it to the stack.

BPOFF Resident

(--- vaddr)

Pushes to stack the VRAM address vaddr containing the offset of the current blocks
file's PAB. This offset is used to manage blocks file PABs space, which has room for
two PABs. This offset is toggled between 0 and 70 each time a new blocks file is
made current.

BRANCH Resident

(---)

The runtime procedure to unconditionally branch. An in-line offset is added to the
interpretive pointer (IP) to branch ahead or back. BRANCH is compiled by ELSE ,
AGAIN , REPEAT , and ENDOF .

BSAVE Resident

(addr blk1 --- blk2)

Places a binary image (starting at blk1 and going as far as necessary) of all dictionary
contents between addr and HERE . The next available Forth block number blk2 is
returned on the stack. BSAVE empties all block buffers before saving the image
because the current blocks file may have changed. It is the user ’s responsibility to

ASCII Collating Sequence: ! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~

186 D.3 fbForth 2.0 Word Descriptions

flush any dirty buffers before executing this command. Note that this is different
behavior from TI Forth’s BSAVE , which first flushes any dirty buffers. See BLOAD .

BUFFER Resident

(n --- addr)

Obtains the next memory buffer, assigning it to block n. If the contents of the buffer
is marked as updated, it is written to the disk. The block is not read from the disk.
The address left is the first cell within the buffer for data storage.

C! Resident

(b addr ---)

Stores the low-order byte (8 bits) of b (16-bit number on the stack) at addr.

C, Resident

(b ---)

Stores the low-order byte (8 bits) of b (16-bit number on the stack) into the next
available dictionary byte (HERE), advancing the dictionary pointer one byte. This
instruction should be used with caution on computers with byte-addressing, word-
oriented CPUs such as the TMS9900. If HERE is left at an odd address and the next
operation stores a cell at HERE , the last byte will be overwritten. See =CELLS .

C/L Resident

(--- n)

Returns on the stack the number of characters per line (stored in C/L$). The default
value is 64 and usually represents the number of characters per line of a Forth block
as it is edited (16 lines per 1024-byte block).

C/L$ Resident

(--- addr)

A user variable whose value is the number of characters per line. See C/L .

C@ Resident

(addr --- b)

Leaves the 8-bit contents b of memory address addr on the stack.

CASE [immediate word] Resident

Used in a colon definition to initiate the construct:

CASE
n1 OF … ENDOF
n2 OF … ENDOF
…
ELSEOF … ENDOF <==This clause is optional. See below.

ENDCASE

Compile time: (--- csp 4)

CASE gets the value csp of CSP to the stack for later restoration at the end of

ASCII Collating Sequence: ! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~

Appendix D The fbForth 2.0 Glossary 187

ENDCASE ’s compile-time activity. It stores the current stack position in CSP to help
ENDCASE track how many OF clause branch distances to process. It finally pushes 4
to the stack for compile-time error checking by OF and ENDCASE .

Runtime: (n --- n)

CASE itself does nothing with the number n on the stack, but it must be there for OF ,
ELSEOF or ENDCASE to consume. If n = n1, the code between the immediately
following OF and ENDOF is executed. Execution then continues after ENDCASE . If n
does not match any of the values preceding any OF , the code between the last ENDOF
and ENDCASE is executed and may use n, but one cell must be left for ENDCASE to
consume or a stack underflow will result. Execution then continues after ENDCASE .

Use of the optional ELSEOF obviates the necessity of putting any difficult-to-design
default action between the last ENDOF and ENDCASE .

CAT CAT -- Disk Catalog Utility [58]

(n ---)

CAT catalogs to the output device the disk number n on the stack for the current DSR.
CAT reads the VIB, FDIR and each file’s FDR to get its information (see Appendix K
“Diskette Format Details”). CAT will not load if DIR is loaded.

Usage: 2 CAT to catalog DSK2.

CEIL Resident

(f1 --- f2)

Finds the least integer f2 (in floating point format) not less than the floating point
number f1.

CELLS More Useful Stack Words etc. [41]

(n --- 2n)

Replace n (a number of cells) with 2n (the number of bytes in n cells).

CF? Compact Flash Utilities [69]

(--- flag)

Checks for the magic number, AA03h, at VRAM address, 3FF8h, where the nanoPEB
or CF7+ DSR places it. It leaves a true flag (1) if found and a false flag (0) if not.

CFA Resident

(pfa --- cfa)

Converts the parameter field address pfa of a definition to its code field address cfa .

CFMOUNT Compact Flash Utilities [69]

(vol# dsk# ---)

Mounts the volume vol# in the virtual disk dsk#. The following entry will mount
volume #234 in DSK2:

 234 2 CFMOUNT

ASCII Collating Sequence: ! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~

188 D.3 fbForth 2.0 Word Descriptions

The volumes mounted by CFMOUNT will persist only through the current session of
fbForth 2.0. This includes cycling through COLD and BOOT . A reset to the TI-
99/4A title screen will mount the three volumes stored in the CF card before
fbForth 2.0 was started. As you can see, you will need to use some other means to
write the volume mounts to the CF card. The following permanent mounting
methods are available:

• CALL MOUNT(vol# dsk#)—TI Basic command, available when a nanoPEB
or CF7+ is attached to the TI-99/4A;

• CFMGR—TI-99/4A program supplied with the nanoPEB or CF7+;

• CF2K—TI-99/4A program by Fred Kaal (www.ti99-geek.nl);

• TI99Dir.exe—PC program by Fred Kaal (www.ti99-geek.nl).

CFVOLS Compact Flash Utilities [69]

(--- volDSK1 volDSK2 volDSK3)

Leaves on the stack the volume numbers associated with DSK1, DSK2 and DSK3.

CHAR Resident

(n1 n2 n3 n4 char ---)

Defines character # char to have the pattern specified by the 4 numbers (n1, n2, n3, n4)
on the stack. The definition for character #0 by default resides at 800h. Each
character definition is 8 bytes long with each number on the stack representing two
bytes.

CHARPAT Resident

(char --- n1 n2 n3 n4)

Places the 4-cell (8-byte) pattern of a specified character char on the stack. By
default, the definition for character #0 resides at 800h.

CLEAR Resident

(blk ---)

Gets a block buffer for block# blk, fills it with blanks and marks it as updated.

CLEN$ Stack-based String Library [42]

($Caddr --- len) “string constant length”

Given the address of a string constant on the data stack the word CLEN$ returns its
actual length on the data stack. For example,

50 $CONST WELCOME ok:0
WELCOME :=" Hello and welcome!" ok:0
WELCOME CLEN$. 18 ok:0

CLINE 64-Column Editor [6] Compact List [13]

(addr count n ---)

Prints one line of tiny characters on the display screen. CLINE expects on the stack
the address addr of the line to be written in memory, the number of characters count

ASCII Collating Sequence: ! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~

Appendix D The fbForth 2.0 Glossary 189

in that line, and the line number n on which it is to be written on the display screen.
CLINE calls SMASH to do the actual work. See SMASH and CLIST .

CLIST 64-Column Editor [6] Compact List [13]

(blk ---)

Lists the specified Forth block in tiny characters to the monitor. CLIST executes 16
calls to CLINE for the requisite 16 lines. See CLINE and TCHAR .

CLOAD [immediate word] Resident

(blk ---) (IS: <check word>)

Used in the form:

blk CLOAD WWWW

CLOAD will load Forth block blk only if the word WWWW is not in the CONTEXT
vocabulary. WWWW should be the last word loaded when the series of blocks beginning
with blk is loaded. A block number of 0 (blk = 0) will suppress loading of the current
Forth block if the specified word has already been compiled.

CLR_BLKS Resident

(blk1 blk2 ---)

CLR_BLKS will CLEAR a range of blocks to blanks in the current blocks file. The
blocks will be marked as updated (see CLEAR).

CLS Resident

(---)

Clears the display screen by filling the screen image table with blanks. The screen
image table runs from SCRN_START to SCRN_END .

CLSE Resident

(---)

Closes the file whose PAB (Peripheral Access Block) is pointed to by PAB-ADDR .

CMOVE Resident

(addr1 addr2 count ---)

Moves count number of bytes from addr1 to addr2. The contents of addr1 is moved
first, proceeding toward high memory. This is not overlap safe for addr1 < addr2.

CMP$ Stack-based String Library [42]

(--- -1|0|+1) (SS: str1 str2 --- str1 str2) “compare strings”

The word CMP$ performs a case-sensitive comparison of the topmost two strings on
the string stack and returns -1 if str1 < str2, 0 if str1 = str2 and +1 if str1 > str2. The
strings are retained. For example,

$" hello" $" HELLO" CMP$. 1 ok:0
$" hello" $" hello" CMP$. 0 ok:0
$" hell" $" hello" CMP$. -1 ok:0

A case insensitive comparison can easily be built as follows:

ASCII Collating Sequence: ! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~

190 D.3 fbForth 2.0 Word Descriptions

: CMPCI$ (--- flag) (SS: str1 str2 --- str1 str2)
OVER$ OVER$ UCASE$ SWAP$
UCASE$ CMP$ DROP$ DROP$;

The above code creates copies of str1 and str2 (using OVER$) then converts them both
to upper case. CMP$ then compares the strings placing the appropriate flag on the
data stack. Finally, the uppercase versions of str1 and str2 are removed from the
string stack. Thus, str1 and str2 are retained, unchanged.

CODE (deprecated TI Forth word) Resident

(---)

CODE has been maintained for TI Forth compatibility. It has been deprecated in
favor of ASM: and CODE: , q.v. See Chapter 9 “The fbForth 2.0 TMS9900
Assembler” for details.

CODE: [immediate word] Resident

(---) (IS: <newword> [<mc> …] ;CODE)

CODE: opens a CODE: cccc … ;CODE word definition that converts numbers in the
IS and compiles them before the interpreter sees them, obviating the necessity of
using the , required by CODE in TI Forth. It is also faster. N>S , q.v., has been
provided to push numbers from the IS to the stack for necessary calculations. See
Chapter 9 “The fbForth 2.0 TMS9900 Assembler” for more information.

COINC Resident

(spr1 spr2 tol --- flag)

Detects a coincidence between two given sprites within a specified tolerance of tol
dot positions. A true flag indicates a coincidence.

COINCALL Resident

(--- flag)

Detects a coincidence between the visible portions of any two sprites on the display
screen. A true flag indicates a coincidence, but not which sprites.

COINCXY Resident

(dotcol dotrow spr tol --- flag)

Detects a coincidence between a specified sprite and a given point (dotcol,dotrow)
within a given tolerance of tol dot positions. A true flag indicates a coincidence.

COLD Resident

(---)

COLD is the cold-start procedure that may be called from the terminal to remove
application programs and to restart fbForth 2.0. It is also the last routine executed
by the fbForth 2.0 startup code. Formerly, it was a high-level Forth word that called
another high-level Forth word (BOOT) at its conclusion. They have both been
combined into a single ALC routine that (re-)sets the Forth environment to the default
startup conditions.

ASCII Collating Sequence: ! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~

Appendix D The fbForth 2.0 Glossary 191

In restarting fbForth 2.0, COLD resets user variables to their startup values, including
the dictionary pointer (to point to just after the resident dictionary), resets the current
blocks file to the default DSKn.FBLOCKS (n is the boot disk number), loads block
#1 and executes ABORT , q.v.

COLD may be called from the terminal to remove application programs and to restart
fbForth 2.0.

See § 1.7.4 “Changes to COLD” for more detail.

COLOR Resident

(n1 n2 n3 ---)

Causes a specified character set n3 to have the given foreground color n1 and
background color n2.

COLTAB Resident

(--- vaddr)

A constant whose value is the beginning VDP address of the color table. The default
value is 380h. This constant can only be changed via user variable number 22h.

COMPILE Resident

(---) (IS: <word>)

COMPILE is a compile-only word that will execute when its containing word
executes, which means that its containing word must be a compile-only word that
executes during compilation, i.e., an immediate word. This effectively defers
compilation of the word following COMPILE until the word containing them is
executed within the definition of yet another word.

When the word containing COMPILE executes during the compilation of a new word,
the execution address cfa of the word following COMPILE is copied (compiled) into
the dictionary entry for the new word’s definition. For example,

: WORD1 … COMPILE WORD0 … ; IMMEDIATE
: WORD2 WORD1 … ;

When WORD2 is compiled, WORD1 executes, which executes COMPILE to place the cfa
of WORD0 into the definition of WORD2 .

CONSTANT Resident

(n ---) (IS: <new name>)

A defining word used in the form:

n CONSTANT cccc

to create word cccc , with its parameter field containing n. When cccc is later
executed, it will invoke CONSTANT ’s execution procedure to push the value of n to
the stack.

ASCII Collating Sequence: ! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~

192 D.3 fbForth 2.0 Word Descriptions

CONTEXT Resident

(--- addr)

A user variable containing a pointer to the vocabulary within which dictionary
searches will first begin.

COS Resident

(f1 --- f2)

Calculates the cosine of f1 radians and leaves the floating point result f2 on the stack.

COUNT Resident

(addr1 --- addr2 b)

Leave the byte address addr2 and byte count b of the packed character string (see
footnote 5 on page 22) beginning at addr1. It is presumed that the first byte at addr1

contains the character count b and that the actual text starts with the second byte.
Typically, COUNT is followed by TYPE .

CPYBLK CPYBLK -- Block Copying Utility [4]

(---)

Copy a range of blocks from one blocks file to the same or a different blocks file.
The destination file must already exist. The copy is overlap safe for same file copies.
The source blocks copied are enumerated during the copy.

Usage:

CPYBLK src_start src_end src-file dst_start dst-file ,

where src_start and src_end are source start and end block numbers, src-file
is the source blocks file, dst_start is the destination start block number and dst-
file is the destination blocks file.

Example:

CPYBLK 4 10 DSK1.FBLOCKS 25 DSK2.MYBLOCKS
4 5 6 7 8 9 10 ok:0

will copy blocks 4 – 10 from DSK1.FBLOCKS to DSK2.MYBLOCKS, starting at
block 25.

CR Resident

(---)

Transmit a carriage return and a line feed to the current output device.

CREATE Resident

(---)

A defining word used in the form:

CREATE cccc

by such words as : , <BUILDS , ASM: and CODE: to create a dictionary header for a
Forth definition. The code field contains the address of the word’s parameter field.

ASCII Collating Sequence: ! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~

Appendix D The fbForth 2.0 Glossary 193

Space for the parameter field is not reserved by CREATE . The new word is created
in the CURRENT vocabulary. CREATE limits new word names to 31 characters in
length in fbForth 2.0 by ANDing the count byte with 31. The reason for this is that
the three leftmost bits of the count byte are control bits (see Chapter 12 “fbForth 2.0
Dictionary Entry Structure”), which leaves only 5 bits for the character count.

CSP Resident

(--- addr)

A user variable temporarily storing the stack pointer position for compilation error
checking.

CURPOS Resident

(--- addr)

A user variable that stores the current VDP (Visual Display Processor) screen cursor
position.

CURRENT Resident

(--- addr)

A user variable pointing to the vocabulary into which new definitions will be
compiled. DEFINITIONS will store the contents of CONTEXT into CURRENT . At
system startup, CURRENT points to the FORTH vocabulary.

D+ Resident

(d1 d2 --- d3)

Leave the double number sum of two double numbers (d3 = d1 + d2).

D+- Resident

(d1 n --- d2)

Negate double number d1 if the sign of n is negative, leaving the result as d2.

D. Resident

(d ---)

Print a signed double number from a 32-bit two’s complement value d. The high-
order 16 bits are most accessible on the stack. Conversion is performed according to
the current radix in BASE . A blank follows. Pronounced “d dot”.

D.R Resident

(d n ---)

Print a signed double number d right-aligned in a field n characters wide.

DABS Resident

(d1 --- d2)

Leave the absolute value d2 of a double number d1.

DATA[[immediate word] Resident

(--- addr n) (IS:n1 … nn)

DATA[opens a DATA[…]DATA construct that compiles numbers and leaves their

ASCII Collating Sequence: ! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~

194 D.3 fbForth 2.0 Word Descriptions

beginning address addr and cell count n on the stack. If compiling within another
definition, DATA[compiles DATA[] and cell count n in front of the array.

DATA[] Resident

(--- addr n)

Runtime routine compiled by DATA[to push to the stack the address addr and
number of cells n of the number array that follows it in a word definition.

DCHAR Resident

(addr cnt chr ---)

DCHAR is similar to “CALL CHAR” in TI Extended Basic, but is not limited to 4
characters. It is similar to CHAR , but uses an array of numbers instead of the stack
for pattern definition. It is used to define one or more characters starting at the
pattern address of character chr. DCHAR moves cnt cells from address addr to the
pattern address of character chr in VRAM.

DCOLOR Resident

(--- addr)

A variable which contains the dot-color information used by DOT . Its value may be a
two-digit hexadecimal number that will be used to set the foreground and background
color or -1 to signal that no color information is to be changed.

DCT Resident

(--- addr)

A constant that pushes to the stack the address addr of the Default Colors Table for
all VDP modes. It also gives the user access to the default text mode because it
immediately follows the table.

VDP Mode

Table
Offset
(bytes)

Screen/
Text

Colors

Color
Table
Colors

TEXT80 0 4Fh 00h

TEXT 2 4Fh 00h

GRAPHICS 4 F4h F4h

MULTI 6 11h F4h

GRAPHICS2 8 FEh 10h

SPLIT 10 FEh F4h

SPLIT2 12 FEh F4h

Default Text
Mode

Table
Offset
(bytes) VDP Mode

TEXT 14 0001h

All changes to the above values will survive execution of COLD .

ASCII Collating Sequence: ! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~

Appendix D The fbForth 2.0 Glossary 195

DECIMAL Resident

(---)

Set the radix in BASE for decimal input/output.

DEFBF Resident

(--- addr)

Gets the address addr of the default blocks filename (DSK1.FBLOCKS) in low RAM
to the stack. This address points to the string-length byte and can be displayed by

COUNT TYPE

If the boot disk is other than DSK1, that will be reflected in the name displayed by
the above Forth code.

DEFINITIONS Resident

(---)

Sets the CURRENT vocabulary to the CONTEXT vocabulary by copying the contents of
CONTEXT to CURRENT . Executing a vocabulary name makes it the CONTEXT
vocabulary and executing DEFINITIONS makes both specify the same vocabulary.
The following example will make both CONTEXT and CURRENT point to the FORTH
vocabulary, which is the system default:

FORTH DEFINITIONS ok:0
DEG/RAD Resident

(--- f)

Constant in floating point format representing degrees/radian = 57.295779513082.

DELALL Resident

(---)

Delete all sprites. DELALL stops sprite motion, fills the sprite motion table with
zeroes and stores D0h in the y position of all 32 sprites to leave them in an undefined
state. DELALL does nothing to the sprite descriptor table. See § 6.6.2 for details.

DELALL must be used to initialize sprites after changing to the desired VDP mode.

DELSPR Resident

(spr ---)

Delete the specified sprite by positioning it off-screen at x = 1, y = 192; setting it to
sprite pattern #0; and clearing its motion table entries.

DEPTH Resident

(--- n)

Return the number of cells on the parameter stack. This word is used by the new
command-line (ok:n) response, where n indicates stack depth.

DEPTH$ Stack-based String Library [42]

(--- n) (SS: ---)

Returns the current depth n of the string stack, with 0 meaning the string stack is
empty.

ASCII Collating Sequence: ! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~

196 D.3 fbForth 2.0 Word Descriptions

DIGIT Resident

(char n1 --- false | n2 true)

Convert the ASCII character char (using number base n1) to its binary equivalent n2,
accompanied by a true flag. If the conversion is invalid, leave only a false flag. For
example, “ DECIMAL 53 10 DIGIT ” will leave “ 5 1 ” on the stack because 53 is the
ASCII code for ‘5’ and is a legitimate digit in base 10. On the other hand, “ DECIMAL
74 16 DIGIT ” will leave only “ 0 ”on the stack because 74 is the ASCII code for ‘J’
and is not a legitimate digit in base 16. However, “ DECIMAL 74 20 DIGIT ” will
leave “ 19 1 ” on the stack because ‘J’ is a legitimate digit in base 20.

DIR DIR--Disk Catalog Utility [36]

(---)

DIR catalogs to the output device the disk device name that follows it in the input
stream. The disk device name must be terminated with a period. DIR gets its
information from the DSR’s catalog “file”. DIR will not load if CAT is loaded.

Usage: DIR DSK1.

DISK_BUF Resident

(--- addr)

A user variable that points to the first byte in VDP RAM of the 128-byte fbForth 2.0
record buffer.

DKB+ Resident

(n ---)

Defining word used to create words that calculate addresses from user variables
containing offsets from fbForth 2.0's VRAM record buffer. Execution of the
defined word pushes to the stack an address calculated by adding the record buffer
address to the offset passed in the user variable, the user-variable-table offset of
which is the parameter field value n passed to DKB+ .

Usage: userVarOffset DKB+ new_word

DLITERAL [immediate word] Resident

Compile time: (d ---) Runtime: (--- d) Interpreting: (---)

Same behavior as LITERAL, q.v., except for a double number d

DLT Resident

(---)

The file I/O routine that deletes the file whose PAB (Peripheral Access Block) is
pointed to by PAB-ADDR .

DMINUS Resident

(d1 --- d2)

Convert d1 to its double number two’s complement d2, i.e., d2 = -d1.

ASCII Collating Sequence: ! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~

Appendix D The fbForth 2.0 Glossary 197

DMODE Resident

(--- addr)

A variable that determines which dot mode is currently in effect. A DMODE value of 0
indicates DRAW mode, a value of 1 indicates UNDRAW mode and a value of 2
indicates DOT-TOGGLE mode. This variable is set by the DRAW , UNDRAW and DTOG
words.

DO [immediate word] Resident

Occurs in a colon-definition in the form:

DO … LOOP
DO … +LOOP

Compile time: (--- addr 3)

When compiling within the colon-definition, DO compiles (DO) , leaving the
following address addr and the value 3 for later error checking by the compile-time
action of LOOP or +LOOP .

Runtime: (lim strt ---)

DO begins a sequence with repetitive execution controlled by a loop limit lim and an
index with initial value strt. DO removes these from the stack and puts them on the
return stack, with the index on top. Upon reaching LOOP , the index is incremented
by one. Until the new index equals or exceeds the limit, execution loops back to just
after DO , otherwise the loop parameters are discarded and execution continues ahead.
Both lim and strt are determined at runtime and may be the result of other operations.
Within a loop, I will copy the current value of the index to the stack. See I , LOOP ,
+LOOP and LEAVE .

DOES> [immediate word] Resident

(---)

A word which defines the runtime action within a high-level defining word. DOES>
alters the code field and first parameter of the new word to execute the sequence of
compiled word addresses following DOES> . It is always used in combination with
<BUILDS . When the DOES> part executes it begins with the address of the first
parameter of the new word on the stack. This allows interpretation using this area or
its contents. Typical uses include the Forth assembler, multidimensional arrays and
compiler generation.

DOES>ASM: [immediate word] Resident

(---) (IS: [<alc>] ;ASM)

DOES>ASM: has the same function as DOES> , q.v., for defining the runtime action
within a high-level defining word, except that its runtime action is defined using
Assembly Language Code (ALC) rather than high-level Forth code. DOES>ASM:
must be paired with ;ASM to enclose the ALC:

: cccc <BUILDS … DOES>ASM: … ;ASM

See Chapter 9 “The fbForth 2.0 TMS9900 Assembler” for more information.

ASCII Collating Sequence: ! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~

198 D.3 fbForth 2.0 Word Descriptions

DOES>CODE: [immediate word] Resident

(---) (IS: [<mc>] ;CODE)

This is the machine-code (MC) version of DOES>ASM: , q.v. It must be paired with
;CODE to enclose the MC:

: cccc <BUILDS … DOES>CODE: … ;CODE

DOES>CODE: compiles any numbers it finds in the IS by jumping into CODE: , q.v.,
to compile the MC. Just as with CODE: , use N>S , q.v., to push numbers to the stack
for necessary calculations. See Chapter 9 “The fbForth 2.0 TMS9900 Assembler” for
more information.

DOT Resident

(dotcol dotrow ---)

In bitmap graphics, plots a dot at (dotcol,dotrow) in whatever mode is selected by
DMODE and in whatever color is selected by DCOLOR .

DO_BRW Resident

([bfnaddr | #blks bfnaddr | bufaddr blk#] opcode ---)

Helper routine that executes BLKRW and processes returned flag. See BLKRW for
items required on stack for each opcode and for an explanation of the stack effects
abbreviations.

DP Resident

(--- addr)

A user variable, the dictionary pointer, which contains the address of the next free
memory above the dictionary. The value may be read by HERE and altered by , and
ALLOT , among other words.

DPL Resident

(--- addr)

A user variable containing the number of digits to the right of the decimal point on
double integer input. It may also be used to hold output column location of a decimal
point in user-generated formatting. The default value on single number input is -1 for
no decimal point. DPL is updated for every double number input.

DRAW Resident

(---)

Sets DMODE equal to 0. This means that dots are plotted in the ‘on’ state.

DROP Resident

(n ---)

Drop the top number from the stack.

DROP$ Stack-based String Library [42]

(---) (SS: str ---) “drop string”

The word DROP$ removes the topmost string item from the string stack. For

ASCII Collating Sequence: ! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~

Appendix D The fbForth 2.0 Glossary 199

example,

$" Hello, World!" ok:0
$" How are you?" ok:0
DROP$ ok:0

At this point the string “Hello, World!” is the topmost string the string stack. “How
are you?” was pushed onto the string stack, but it was immediately dropped.

DSPLY Resident

(---)

Assigns the attribute DISPLAY to the file pointed to by PAB-ADDR .

DSRLNK Resident

(---)

Links an fbForth 2.0 program to any Device Service Routine (DSR) in ROM.
Before this instruction may be used, a PAB must be set up in VDP RAM and a
pointer to PAB + 9 stored at 8356h. See the Editor/Assembler Manual and Chapter 8
of this manual for additional setup information. This word automatically passes 8 to
the DSR to execute DSR routines. It cannot execute DSR subprograms that require
passing 10.

DTOG Resident

(---)

Sets DMODE equal to 2. This means that each dot plotted takes on the opposite state
as the dot currently at that location.

DUMP Memory Dump Utility [16]

(addr n ---)

Print the contents of n memory locations beginning at addr. Both addresses and
contents are shown in hexadecimal notation. DUMP is 80-column-text-mode aware if
your computer is so equipped. See PAUSE .

DUP Resident

(n --- n n)

Duplicates the value on top of the stack.

DUP$ Stack-based String Library [42]

(---) (SS: str1 --- str1 str1) “duplicate string”

The word DUP$ duplicates the top item on the string stack. For example,

$" Hello, World!" DUP$ ok:0

DXY Resident

(dotcol1 dotrow1 dotcol2 dotrow2 --- n1 n2)

Places on the stack the square of the x distance n1 and the square of the y distance n2

between the points (dotcol1,dotrow1) and (dotcol2,dotrow2).

ASCII Collating Sequence: ! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~

200 D.3 fbForth 2.0 Word Descriptions

ECOUNT Resident

(--- addr)

A user variable that contains an error count. This is used to prevent error recursion.

ED@ Resident

(---)

Brings you back into the 40/80-column editor on the last fbForth 2.0 block you
edited. This block is pointed to by SCR . Must be in Text or Text80 mode.

ED@ (EDITOR2 Vocabulary) 64-Column Editor [6]

(---)

Brings you back into the 64-column editor on the last fbForth 2.0 block you edited.
This block is pointed to by SCR .

EDIT Resident

(blk ---)

Brings you into the 40/80-column editor on the specified fbForth 2.0 block, loading
it from the current blocks file if necessary. Must be in Text or Text80 mode.

EDIT (EDITOR2 Vocabulary) 64-Column Editor [6]

(blk ---)

Brings you into the 64-column editor on the specified fbForth 2.0 block, loading it
from the current blocks file if necessary.

ELSE [immediate word] Resident

Occurs within a colon-definition in the form:

IF … ELSE … ENDIF

Compile time: (addr1 2 --- addr2 2)

ELSE emplaces BRANCH , reserving a branch offset and leaves the address addr2 and
2 for error testing because the incoming ‘2’ is consumed for error checking. ELSE
also resolves the pending forward branch from IF by calculating the offset from
addr1 to HERE and storing it at addr1.

Runtime: (---)

ELSE executes after the true part following IF . ELSE forces execution to skip over
the following false part and resume execution after ENDIF . It has no stack effect.

ELSEOF [immediate word] Resident

ELSEOF is the start of the catchall default ELSEOF … ENDOF clause that occurs
inside a colon definition as the optional default clause within the CASE … ENDCASE
construct, just before ENDCASE . If execution reaches ELSEOF , the words between
ELSEOF and ENDOF will always be executed. There should be no value preceding
ELSEOF because the runtime stack value will be duplicated in its place to force a
match by the compiled (OF) .

ASCII Collating Sequence: ! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~

Appendix D The fbForth 2.0 Glossary 201

Use of the ELSEOF clause guarantees that ENDCASE will never execute. It is a lot
easier to use an ELSEOF clause instead of trying to contrive a default action ahead of
ENDCASE . Compare with a description of just such a default action at CASE .

Compile time: (4 --- addr 5)

Checks for the value 4 on the stack left there by CASE or a previous ENDOF ,
compiles DUP to force runtime comparison of the value on the stack with itself
(guaranteeing a match), compiles (OF) , leaves its address addr for branching
resolution by ENDOF and leaves a 5 for its matching ENDOF to check.

Runtime: (n n ---)

Duplicates the value n, which was on top of the stack when CASE ’s runtime action
occurred. Comparison of the two identical numbers forces execution of the words
between ELSEOF and ENDOF . See CASE and ENDOF .

EMIT Resident

(char ---)

Transmit 7-bit ASCII character char to the current output device. OUT , q.v., is
incremented for each character output.

EMIT8 Resident

(char ---)

Transmit an 8-bit character char to the current output device. OUT , q.v., is
incremented for each character output.

EMPTY-BUFFERS Resident

(---)

Mark all block buffers as empty, not necessarily affecting the contents. Updated
blocks are not written to the current blocks file. This is also an initialization
procedure executed by COLD , q.v., before first use of the default blocks file.

ENCLOSE Resident

(addr1 char --- addr1 n1 n2 n3)

The text scanning primitive used by WORD . From the text address addr1 and an
ASCII-delimiting character char, is determined the byte offset n1 to the first non-
delimiter character, the offset n2 to the delimiter after the text and the offset n3 to the
first character not included, i.e., the character about to be read. This procedure will
not process past an ASCII NUL (0), treating it as an unconditional parsing terminator.

WORD uses the output from ENCLOSE to advance IN by n3 and calculate the parsed
word’s length as n2 – n1 for use in constructing the packed character string (see
footnote 5 on page 22) for the word, which WORD copies to HERE .

If we let each ‘{}’ represent one character; each character is either a non-delimiter
character, ‘chr’, a delimiter character, ‘delim’, or the null character, ‘0’, ENCLOSE
allows three possible parsing scenarios after leading delimiter characters are skipped:

ASCII Collating Sequence: ! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~

202 D.3 fbForth 2.0 Word Descriptions

1) n1n3 {0}n2

2) n1{chr}…{chr}n2n3{0}

3) n1{chr}…{chr}n2{delim}n3{chr | 0}…

The offsets, n1, n2 and n3 are shown above in the positions they indicate when
returned on the stack by ENCLOSE . Where they are shown next to each other, they,
in fact, have the same value. One thing to keep in mind is that n3 will never point to
the position after an ASCII 0.

Scenario (1) above is important because it is the only way that INTERPRET ,
otherwise an infinite loop, can be forced to exit. The null character will be parsed as
a single-character word that will be found in the dictionary and executed by
INTERPRET , causing INTERPRET ’s demise.

END [immediate word] Resident

Compile time: (addr 1 ---) Runtime: (flag ---)

This is an alias or duplicate definition for UNTIL . See UNTIL for details.

ENDCASE [immediate word] Resident

Occurs in a colon definition as the termination of the CASE … ENDCASE construct.

Compile time: (csp addr1 … addrn 4 ---)

It uses the 4 for compile-time error checking. It uses the value in CSP put there by
CASE to track the number of OF clauses for which it must calculate branch distances
from the addresses (addr1 … addrn) that each ENDOF left on the stack.

Runtime: (n ---)

If all OF clauses fail, any code after the last ENDOF , including ENDCASE , will
execute. ENDCASE will remove the number n left on the stack by the failure of the
last OF clause.

If you include code between the last ENDOF and ENDCASE , it must leave at least one
number on the stack for ENDCASE to consume to prevent stack underflow. See
CASE .

A better default action is to use an ELSEOF clause (with no preceding value) as the
last clause before ENDCASE . See ELSEOF for more information.

ENDIF [immediate word] Resident

Occurs in a colon-definition in the form:

IF … ENDIF (also IF … THEN)
IF … ELSE … ENDIF (also IF … ELSE … THEN)

Compile time: (addr 2 ---)

ENDIF computes the forward branch offset from addr to HERE and stores it at the
spot reserved for it at addr. The value 2 is used for error testing.

Runtime: (---)
ENDIF serves only as the destination of a forward branch from IF or ELSE . It marks

ASCII Collating Sequence: ! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~

Appendix D The fbForth 2.0 Glossary 203

the conclusion of the conditional structure. THEN is another name for ENDIF . Both
names are supported in fig-Forth. See also IF and ELSE .

ENDOF [immediate word] Resident

Occurs in a colon definition as the termination of the OF … ENDOF construct within
the CASE … ENDCASE construct.

Compile time: (addr1 5 --- addr2 4)

ENDOF checks for a 5 on the stack. It then compiles BRANCH , leaves its address
addr2 for processing by ENDCASE . It next leaves 4 on the stack for compile-time
error checking by the next OF or ENDCASE . It finally calculates the forward branch
offset from addr1 to HERE for its matching OF and stores the value at the spot
reserved for it at addr1.

Runtime: (---)

ENDOF causes execution to proceed after ENDCASE . See OF .

ERASE Resident

(addr n ---)

Clear n bytes of memory to zero starting at addr.

ERROR Resident

(n1 --- n2 n3 | [])

ERROR processes error notification and restarts the interpreter. WARNING is first
examined. If WARNING < 0, (ABORT) , q.v., is executed. The sole action of (ABORT)
is to execute ABORT . This allows the user to (cautiously!) modify this behavior by
replacing the cfa of (ABORT) with the cfa of the user’s error procedure. ABORT
clears the stacks and executes QUIT , which stops compilation and restarts the
interpreter.

If WARNING ≥ 0, ERROR clears ECOUNT and the parameter stack. Then, if the input
stream is coming from the loading of blocks and not the terminal, ERROR leaves the
contents of IN n2 and BLK n3 on the stack to assist in determining the location of the
error. Execution of WHERE , at this point, will open the offending block in the editor
and place the cursor at the text immediately following the token that caused the error.

If WARNING > 0, ERROR prints the error text of system message number n1. If
WARNING = 0, ERROR prints n1 as an error number (This was used in TI Forth in a
non-disk installation, but this is unnecessary in fbForth 2.0 because the system
messages are always present in cartridge ROM). The last thing ERROR does is to
execute QUIT , which, as above, stops compilation and restarts the interpreter.

EXECUTE Resident

(cfa ---)

Execute the definition whose code field address is on the stack. The code field
address is also called the compilation address.

ASCII Collating Sequence: ! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~

204 D.3 fbForth 2.0 Word Descriptions

EXIT [immediate word] More Useful Stack Words etc. [41]

(---)

EXIT is a synonym for ;S , which stops interpretation of a Forth block or ends the
current word’s execution and returns to the calling procedure.

EXP Resident

(f1 --- f2)

Raises e to the power specified by the floating point number f1 on the stack and
leaves the result f2 on the stack.

EXPECT Resident

(addr count ---)

Transfer characters from the terminal to addr until <ENTER> or count characters have
been received. The character count is not stored with the string. One or more nulls
are added at the end of the text.

F! Resident

(f addr ---)

Stores a floating point number f into the 4 words (cells) beginning with the specified
address.

F* Resident

(f1 f2 --- f3)

Multiplies the top two floating point numbers on the stack and leaves the result on the
stack. f1 * f2 = f3.

F+ Resident

(f1 f2 --- f3)

Adds the top two floating point numbers on the stack and places the result on the
stack. f1 * f2 = f3.

F– Resident

(f1 f2 --- f3)

Subtracts f2 from f1 and places the result on the stack (f1 – f2 = f3).

F->S Resident

(f --- n)

Converts a floating point number f on the parameter stack into a single precision
number n.

F-D" [immediate word] Resident

(---) (IS: filename")

Expects a file descriptor ending with a " to follow. This instruction places the file
descriptor in the PAB (Peripheral Access Block) pointed to by PAB-ADDR .

ASCII Collating Sequence: ! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~

Appendix D The fbForth 2.0 Glossary 205

F. Resident

(f ---)

Prints a floating point number f in TI Basic format to the output device.

F/ Resident

(f1 f2 --- f3)

Divides f1 by f2 and leaves the floating point quotient f3 on the stack. f1 / f2 = f3.

F0< Resident

(f --- flag)

Compares the floating point number f on the stack to 0. If it is less than 0, a true flag
is left on the stack, else a false flag is left.

F0= Resident

(f --- flag)

Compares the floating point number f on the stack to 0. If it is equal to 0, a true flag
is left on the stack, else a false flag is left.

F< Resident

(f1 f2 --- flag)

Leaves a true flag if f1 < f2, else leaves a false flag.

F= Resident

(f1 f2 --- flag)

Leaves a true flag if f1 = f2, else leaves a false flag.

F> Resident

(f1 f2 --- flag)

Leaves a flag if f1 > f2, else leaves a false flag.

F>R Resident

(f ---) (R: --- f)

Moves the 8-byte floating point number f from the parameter stack to the return
stack. See R>F .

F@ Resident

(addr --- f)

Retrieves the floating point contents f of the given address (4 words) and places it on
the stack.

FABS Resident

(f1 --- f2)

Converts the floating point number f1 to its absolute value f2.

ASCII Collating Sequence: ! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~

206 D.3 fbForth 2.0 Word Descriptions

FCONSTANT Resident

(f ---) (IS: constName)

A defining word used in the form:

f FCONSTANT cccc

to create word cccc , with its parameter field containing the initial value f. When
cccc is later executed, it will invoke FCONSTANT ’s execution procedure to push the
8-byte floating point value in cccc’s parameter field to the stack.

FDROP Resident

(f ---)

Drops the top floating point number f from the stack.

FDUP Resident

(f --- f f)

Duplicates the top floating point number f on the stack.

FENCE Resident

(--- addr)

A user variable containing an address (usually the nfa of a Forth word) below which
FORGETting is trapped. To FORGET below this point the user must alter the contents
of FENCE . It is possible to set the value of FENCE to a value that is actually less than
the address of the end of the last word in the core dictionary (TASK) such that
UNFORGETABLE [sic] will report false. However, FORGET will still trap that error.

FFMT. Resident

(f [intLen fracLen] optMask ---)

This word can handle free-format, TI Basic-style output of floating point numbers as
well as fixed-format output that includes F-, E- and extended E-type formats. For
free-format output, only the floating point number and optMask = 0 is required on the
stack.

optMask is composed of the following bits:

• bit 0: 0 = free form TI Basic style
◦ no other bits should be set
◦ intLen and fracLen should not be on the stack
◦ 1 = fixed format

• bit 1: 2 = explicit sign
• bit 2: 4 = show ‘+’ for positive number instead of space

◦ bit 1 must also be set
• bit 3: 8 = E-notation (2 exponent digits)
• bit 4: 16 = extended E-notation (3 exponent digits)

◦ bit 3 must also be set

If optMask is not 0, intLen and fracLen must be on the stack, as well. If the sum of
intLen and fracLen exceeds 16, an error message will be displayed:

ASCII Collating Sequence: ! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~

Appendix D The fbForth 2.0 Glossary 207

• intLen: number of places before decimal point, including sign position
• fracLen: number of places after decimal point, including decimal point and

excluding E-notation

Various examples, using floating point numbers defined with >F and FPCON , q.v.,
follow:

>F 1.234567890123E-7 ok:4
0 FFMT. 1.23457E-07 ok:0
>F 1.234567890123E-102 FCONSTANT FPCON ok:0
FPCON ok:4
0 FFMT. 1.23457E-** ok:0
FPCON FDUP FDUP FDUP FDUP ok:20
2 14 1 FFMT. .0000000000000 ok:16
2 10 9 FFMT. 1.234567890E-** ok:12
2 12 25 FFMT. 1.23456789012E-102 ok:8
2 14 31 FFMT. +1.2345678901230E-102 ok:4
2 15 9 FFMT. field too big! ok:0

FILE Resident

(vaddr1 addr vaddr2 ---) (IS: <file word>)

A defining word which permits you to create a word by which a file will be known.
You must place on the stack the PAB-ADDR , PAB-BUF and PAB-VBUF addresses you
wish to be associated with the file.

Used in the form:

vaddr1 addr vaddr2 FILE cccc

When cccc executes, PAB-ADDR , PAB-BUF and PAB-VBUF are set to vaddr1, addr
and vaddr2, respectively.

FILES Resident

(n ---)

Change the number of files fbForth 2.0 can have open simultaneously. The number
of files can be 1 – 16. Each additional file requires an additional 518 bytes of upper
VRAM, reducing the available VRAM for your program. Location 8370h holds the
highest available address in VRAM.

FILL Resident

(addr count b ---)

Fill memory beginning at addr with count bytes of byte b.

FIND$ Stack-based String Library [42]

(start --- pos | -1) (SS: ---) “find string in string”

The word FIND$ searches the second string on the string stack, starting from position
start, for the first occurrence of the topmost string and pushes its starting position to
the data stack. As a convenience to making subsequent searches for the same
substring easier, both strings are retained on the string stack. For example,

$" redgreenbluegreen" $" green" 0 FIND$. 3 ok:0

ASCII Collating Sequence: ! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~

208 D.3 fbForth 2.0 Word Descriptions

displays the value 3, as the substring is found at character position 3, the leftmost
character being character 0. The strings “redgreenbluegreen” and “green” remain on
the stack. Thus, the second instance of “green” could be found with a second search.

FINDC$ Stack-based String Library [42]

(char --- pos|-1) (SS: ---) “find character in string”

The word FINDC$ returns the position of the first occurrence of the character char,
beginning at the left side of the topmost string, with the search proceeding towards
the right. If the character is not found, -1 is returned. For example,

$" redgreenblue" 98 FINDC$. 8 ok:0

Displays the value 8, as the character ‘b’ (ASCII 98) is found in the 8th character
position, where the first character is character 0.

FIRST Resident

(--- addr)

A constant that leaves the address of the first (lowest) block buffer.

FIRST$ Resident

(--- addr)

A user variable which contains the first byte of the disk buffer area.

FLERR Resident

(--- n)

Returns on the stack the contents n, reported by the floating point library in its
floating point error variable.

FLOOR Resident

(f1 --- f2)

Finds the greatest integer f2 (in floating point format) not less than the floating point
number f1.

FLUSH Resident

(---)

Writes to disk all disk buffers that have been marked as updated.
FM/MOD Resident

(d n --- rem quot)

A mixed magnitude math operator that performs floored division to leave the signed
remainder rem and signed quotient quot from a double-number dividend d and single-
number divisor n. The quotient is rounded toward negative infinity and the
remainder given the sign of the divisor. See Chapter 18 “Signed Integer Division”
for more details.

FMINUS Resident

(f1 --- f2)

Negates f1 by taking the two’s complement of the cell on top of the stack, i.e., f2 = -f1.

ASCII Collating Sequence: ! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~

Appendix D The fbForth 2.0 Glossary 209

The top cell on the stack is the most significant cell (2 bytes) of a floating point
number.

FNT Resident

(---)

FNT loads either the default font file (can be changed by user with USEFFL, q.v.) or
the console font into the Pattern Descriptor Table (PDT) depending on the value of
the user variable SCRFNT . The default font is loaded from DSK1.FBFONT by FNT
(or from DSKn.FBFONT if key n is held down) at fbForth 2.0 startup because
SCRFNT = -1 at startup. The fbForth 2.0 system default font contains the patterns
for ASCII character codes 0 – 127. The font pattern for each character is 8 bytes,
which means that 1 KiB of pattern code is loaded into the PDT. This font contains
true lowercase characters with true descenders.

Executing COLD will maintain the currently selected font as the default. Restarting
the system with BOOT , MON or a power cycle will restore loading of the system font
from DSK1.FBFONT.

See Chapter 13 “Screen Fonts and the Font Editor” for more detail.

FONTED Resident

(---)

Typing FONTED opens the font editor with the current font loaded from the PDT.
Editing the font will not affect the current font because the working buffer is not the
PDT. See Chapter 13 “Screen Fonts and the Font Editor” for details.

FORGET Resident

(---)

Executed in the form:

FORGET cccc

Deletes the definition named cccc from the dictionary along with all dictionary
entries physically following it.

FORGET first checks the lfa of cccc to see if it is lower than the address in FENCE .
If it is not, FORGET then checks whether it is lower than the address of the last byte of
the core dictionary. If it is not lower than either of these addresses, FORGET updates
HERE to the lfa of cccc , effectively deleting the desired part of the dictionary.
Otherwise, an appropriate error message is displayed.

If you wish to FORGET an unfinished definition, the word likely will not be found. If
it is the last definition attempted, you can make it findable by executing SMUDGE and
then FORGETting it.

FORTH [immediate word] Resident

(---)

The name of the primary vocabulary. Execution makes FORTH the CONTEXT
vocabulary. Until additional user vocabularies are defined, new user definitions
become a part of FORTH because it is at that point also the CURRENT vocabulary.

ASCII Collating Sequence: ! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~

210 D.3 fbForth 2.0 Word Descriptions

Because FORTH is immediate, it will execute during the creation of a colon definition
to select this vocabulary at compile time.

FOVER Resident

(f1 f2 --- f1 f2 f1)

Copies the second floating point number on the stack to the top of the stack.

FP1 Resident

(--- f)

Pushes a floating point 1 f to the stack.

FP10 Resident

(--- f)

Pushes a floating point 10 f to the stack.

FPB Resident

(--- vaddr)

Pushes VRAM address vaddr of user screen font file PAB to stack.

FRAC Resident

(f1 --- f2)

Truncates f1, leaving the fractional portion f2 on the stack.

This word has a bug that causes a system crash. It will be fixed in the next revision
of fbForth 2.0. In the meantime, you can redefine FRAC as follows:

: FRAC FDUP TRUNC F- ;

FRND Resident

(--- f)

Generates a pseudo-random floating point number f greater than or equal to 0 and
less than 1.

FROT Resident

(f1 f2 f3 --- f2 f3 f1)

Moves the third floating point number f1 down from the top of the stack to the top of
the stack.

FSWAP Resident

(f1 f2 --- f2 f1)

Swaps the top two floating point numbers on the stack.

FVARIABLE Resident

(f ---) (IS: varName)

A defining word used in the form:

f FVARIABLE cccc

to create word cccc , with its parameter field containing f. When cccc is later
executed, it will invoke FVARIABLE ’s execution procedure to push to the stack

ASCII Collating Sequence: ! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~

Appendix D The fbForth 2.0 Glossary 211

cccc ’s parameter field address, from which the current value may be fetched with
F@ or to which a new value may be stored with F! .

FXD Resident

(---)

Assigns the attribute FIXED to the file whose PAB (Peripheral Access Block) is
pointed to by PAB-ADDR .

GCHAR Resident

(col row --- char)

Returns on the stack the ASCII code char of the character currently at (col,row).
Note: Rows and columns are numbered from 0.

GOTOXY Resident

(col row ---)

Places the cursor at the designated column col and row row position. Note: Rows
and columns are numbered from 0.

GPLLNK Resident

(addr ---)

Links a Forth program to the Graphics Programming Language (GPL) routine located
at the given address.

GRAPHICS Resident

(---)

Converts from present display screen mode into standard Graphics mode
configurations.

GRAPHICS2 Resident

(---)

Converts from present display screen mode into standard Graphics2 (Bitmap) mode
configuration.

HCHAR Resident

(col row count char ---)

Prints a horizontal stream of a specified character char beginning at (col,row) and
having a length count. Note: Rows and columns are numbered from 0. HCHAR does
not check to see whether (col,row) is within the screen buffer or whether count will
overrun VRAM after the screen buffer. This is the same behavior as in TI Forth.
This behavior will be changed in the next build of fbForth 2.0 to conform to how TI
Basic and TI Extended Basic implement this function, i.e., in the next build, HCHAR
will throw an error if it would start outside the screen buffer and it will wrap to the
start of the screen buffer upon reaching the end of the screen buffer.

HERE Resident

(--- addr)

Leave the address of the next available dictionary location.

ASCII Collating Sequence: ! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~

212 D.3 fbForth 2.0 Word Descriptions

HEX Resident

(---)

Set the numeric conversion base to sixteen (hexadecimal).

HLD Resident

(--- addr)

A user variable that holds the address of the latest character of text during numeric
output conversion.

HOLD Resident

(char ---)

Used between <# and #> to insert an ASCII character into a pictured numeric output
string, e.g., 2E HOLD will place a decimal point.

HONK Resident

(---)

Produces the sound associated with incorrect input.

I Resident

(--- n)

Used within a DO loop to copy the loop index to the stack. I is a synonym for R .

ID. Resident

(nfa ---)

Print a definition’s name from its name field address nfa.

IF [immediate word] Resident

Occurs in a colon definition in form:

IF (true part) … THEN
IF (true part) … ENDIF
IF (true part) … ELSE (false part) … THEN
IF (true part) … ELSE (false part) … ENDIF

Compile time: (--- addr 2)

IF compiles 0BRANCH and reserves space for an offset at addr; addr and 2 are used
later for resolution of the offset and error testing.

Runtime: (flag ---)

IF selects execution based on a Boolean flag. If flag is true (non-zero), execution
continues ahead through the true part. If flag is false (zero), execution skips to just
after ELSE to execute the false part when an ELSE clause is present. After either part,
execution resumes after THEN (or ENDIF). ELSE and its false part are optional.
With no ELSE clause, false execution skips to just after THEN (or ENDIF).

IMMEDIATE Resident

(---)

Mark the most recently made definition so that when encountered at compile time, it
will be executed rather than being compiled. i.e., the precedence bit in its header is

ASCII Collating Sequence: ! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~

Appendix D The fbForth 2.0 Glossary 213

set. This method allows definitions to handle unusual compiling situations rather
than build them into the fundamental compiler. The user may force compilation of an
immediate definition by preceding it with [COMPILE] .

IN Resident

(--- addr)

A user variable containing the byte offset within the current input text buffer
(terminal or disk) from which the next text will be accepted. WORD uses and moves
the value of IN .

INDEX Printing Routines [19]

(n1 n2 ---)

Prints to the terminal a list of the line #0 comments from Forth block n1 through
Forth block n2. See PAUSE .

INIT$ Stack-based String Library [42]

(size ---) (SS: ---) “initialize string stack”

The string stack must be initialized to some convenient size by executing INIT$
once the library is LOADed:

512 INIT$ ok:0

will initialize the string stack to 512 bytes. INIT$ should only be executed once
because initializing the string stack a second time will orphan the previous instance
and waste memory.

INPT Resident

(---)

Assigns the attribute INPUT to the file whose PAB is pointed to by PAB-ADDR .

INT Resident

(f1 --- f2)

Returns the greatest integer f2 not greater than the input value f1.

INTERPRET Resident

(---)

The outer text interpreter, which sequentially executes or compiles text from the
input stream (terminal or disk) depending on STATE . If the word name cannot be
found after a search of CONTEXT and then CURRENT , INTERPRET attempts to
convert it into a number according to the current radix in BASE . That also failing, an
error message echoing the name with a “?” will be given. Text input will be taken
according to the convention for WORD . If a decimal point is found as part of a
number, a double number value will be left. The decimal point has no other purpose
than to force this action. See NUMBER .

INTLNK Resident

(--- addr)

A user variable which is a pointer to the Interrupt Service linkage.

ASCII Collating Sequence: ! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~

214 D.3 fbForth 2.0 Word Descriptions

INTRNL Resident

(---)

Assigns the attribute INTERNAL to the file whose PAB is pointed to by PAB-ADDR .

ISR Resident

(--- addr)

A user variable that initially contains 0 to indicate that no user Interrupt Service
Routine (ISR) has been installed. The user must modify ISR to contain the cfa of the
Forth routine to be executed each 1/60 second. Next, the contents of the console ISR
hook, 83C4h, must contain the address of the fbForth 2.0 ISR, which it does at
startup. Note that the interrupt service linkage code address is always available in
INTLNK .

The console ISR hook, 83C4h, should be zeroed before changing ISR and restored
with the value in INTLNK after changing it.

See Chapter 10“Interrupt Service Routines (ISRs)” for much more detail.

J Resident

(--- n)

Used within an inner DO loop to copy the loop index of the next outer DO loop to the
stack.

JCRU Resident

(n1 --- n2)

Executed by JOYST when JMODE ≠ 0, JCRU allows input from joystick #1 (n1 = 1) or
#2 (n1 = 2). The value n2 returned will have 0 or more of the 5 least significant bits
set for direction and fire-button status. Bit values are 1 = Fire, 2 = W, 4 = E, 8 = S
and 16 = N. Two-bit directional combinations are 18 = NW (N + W or 16 + 2),
20 = NE, 10 = SW and 12 = SE. See § 6.8 “Using Joysticks” for more information.

JKBD Resident

(n1 --- char n2 n3)

Executed by JOYST when JMODE = 0, JKBD allows input from joystick #1 and the
left side of the keyboard (n1 = 1) or from joystick #2 and the right side of the
keyboard (n1 = 2). Values returned are the character code char of the key pressed, the
x status n2 and the y status n3. See § 6.8 “Using Joysticks” for more information.

JMODE Resident

(--- addr)

A user variable that uses offset 26h of the user variable table. It is used by JOYST to
determine whether to execute JKBD (= 0) or JCRU (≠ 0). The default value is 0. See
JOYST , JKBD and JCRU .

ASCII Collating Sequence: ! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~

Appendix D The fbForth 2.0 Glossary 215

JOYST Resident

(n1 --- [char n2 n3] | n2)

Allows input from joystick #1 and the left side of the keyboard (n1 = 1) or from
joystick #2 and the right side of the keyboard (n1 = 2). Return values depend on the
value in JMODE . If JMODE = 0 (default), JOYST executes JKBD , which returns the
character code char of the key pressed, the x status n2 and the y status n3. If
JMODE ≠ 0, JOYST executes JCRU , which reads only the joysticks and returns a
single value with 0 or more of the 5 least significant bits set. See JCRU and § 6.8
“Using Joysticks” for their meaning.

KEY Resident

(--- char)

Wait for the next terminal keystroke. Leave its ASCII (7-bit) value on the stack.

KEY8 Resident

(--- char)

Wait for the next terminal keystroke. Leave its full 8-bit value on the stack.

L/SCR Resident

(--- n)

Returns on the stack the number of lines per Forth block.

LATEST Resident

(--- nfa)

Leave the name field address nfa of the most recently defined word in the CURRENT
vocabulary. At compile time, this “latest” word will be the most recently compiled
word.

LCASE$ Stack-based String Library [42]

(---) (SS: str1 --- str2) “convert to lower case”

The word LCASE$ converts all upper case characters in the topmost string to lower
case. For example,

$" HELLO WORLD! 1234" LCASE$.$ hello world! 1234 ok:0

LD Resident

(n ---)

The file I/0 process to load a program file from a disk into VDP RAM. The
parameter n specifies the maximum number of bytes to be loaded and is usually the
size of the file on disk. The file’s PAB must be set up and be the current PAB, to
which PAB-ADDR points, before executing this word.

LDCR CRU Words [5]

(n1 n2 addr ---)

Performs a TMS9900 LDCR instruction. The CRU base address addr will be shifted

ASCII Collating Sequence: ! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~

216 D.3 fbForth 2.0 Word Descriptions

left one bit and stored in workspace register R12 prior to executing the TMS9900
LDCR instruction. The low-order n2 bits of value n1 are transferred to the CRU,
where the following condition, n2 ≤ 15, is enforced by n2 AND 0Fh. If n2 = 0, 16 bits
are transferred. For program clarity, you may certainly use n2 = 16 to transfer 16
bits because n2 = 0 will be the value actually used by the final machine code. See
§ 11.3 and CRU documentation in the Editor/Assembler Manual for more
information.

LEAVE Resident

(---)

Force termination of a DO loop at the next opportunity by setting the loop limit equal
to the current value of the index. The index itself remains unchanged, and the
execution proceeds normally until LOOP or +LOOP is encountered.

LEFT$ Stack-based String Library [42]

(len ---) (SS: str1 --- str1 str2) “left of string”

The word LEFT$ pushes the leftmost len characters to the string stack as a new
string. The original string is retained. For example,

$" redgreenblue" 3 LEFT$ ok:0

The above causes the string “red” to be pushed to the string stack.

LEN$ Stack-based String Library [42]

(--- len) (SS: ---) “length of string”

The word LEN$ returns the length of the topmost string on the string stack. For
example,

$" Hello world!" len$. 12 ok:0

LFA Resident

(pfa --- lfa)

Convert the parameter field address pfa of a dictionary definition to its link field
address lfa.

LIMIT Resident

(--- addr)

A constant which leaves the address addr just above the highest memory available for
a disk buffer.

LIMIT$ Resident

(--- addr)

A user variable that contains the address just above the highest memory available for
a disk buffer. The address of LIMIT$ is left on the stack.

LINE Resident

(dotcol1 dotrow1 dotcol2 dotrow2 ---)

The high resolution graphics routine which plots a line from (dotcol1,dotrow1) to

ASCII Collating Sequence: ! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~

Appendix D The fbForth 2.0 Glossary 217

(dotcol2,dotrow2). DCOLOR and DMODE must be set before this instruction is used.

LIST Resident

(blk ---)

Lists the specified Forth block to the output device. See PAUSE .

LIT Resident

(--- n)

Within a colon-definition, LIT is automatically compiled before each 16-bit literal
number encountered in input text. Later execution of LIT causes the contents of the
next dictionary address to be pushed to the stack.

LITERAL [immediate word] Resident

Interpretation: (---)

Interpretation of LITERAL does nothing, unlike almost all other compiling words.

Compile time: (n ---)

Compiles the stack value n as a 16-bit literal. This will execute during a colon
definition. The intended use is:

: xxx [calculation] LITERAL ;

Compilation is suspended for the compile-time calculation of a value. Compilation is
resumed and LITERAL compiles this value.

Runtime: (--- n)

Pushes n to the stack.

LN10INV Resident

(--- f)

Leaves the floating point number f = 0.43429448190325, which is the inverse of
ln(10) = 2.302585092994.

LOAD Resident

(n ---)

Begin interpretation of Forth block n. Loading will terminate at the end of the Forth
block or at ;S . See ;S and --> .

LOG Resident

(f1 --- f2 | f1)

The floating point operation that returns the natural logarithm f2 of the floating point
number f1. If f1 is 0 or negative, the original number f1 is returned instead.

LOG10 Resident

(f1 --- f2 | f1)

The floating point operation that returns the decimal logarithm f2 of the floating point
number f1. If f1 is 0 or negative, the original number f1 is returned instead.

ASCII Collating Sequence: ! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~

218 D.3 fbForth 2.0 Word Descriptions

LOOP [immediate word] Resident

Occurs in a colon definition in the form:

DO … LOOP

Compile time: (addr 3 ---)

LOOP compiles (LOOP) and uses addr to calculate an offset to DO . The value 3 is
used for compile-time error testing.

Runtime: (---)

LOOP selectively controls branching back to the corresponding DO based on the loop
index and limit. The loop index is incremented by one and compared to the limit.
The branch back to DO occurs until the index equals or exceeds the limit. At that
time, the parameters are discarded and execution continues ahead.

LTRIM$ Stack-based String Library [42]

(---) (SS: str1 --- str2) “trim left of string”

The word LTRIM$ removes leading spaces from the topmost string. For example,

$" hello!" LTRIM$.$ hello! ok:0

M* Resident

(n1 n2 --- d)

A mixed magnitude math operation that leaves the double-number signed product d
of two signed numbers, n1 and n2.

M/ Resident

(d n --- rem quot)

A mixed magnitude math operator that leaves the signed remainder rem and signed
quotient quot from a double-number dividend d and single-number divisor n. M/
uses user variable S|F , q.v., to determine whether to use SM/REM , q.v., for
symmetric division (the default) or FM/MOD , q.v., for floored division. See Chapter
18 “Signed Integer Division” for more details.

M/MOD Resident

(ud u --- urem udquot)

An unsigned mixed-magnitude math operation that leaves an unsigned double-
number quotient udquot and an unsigned single-number remainder urem from an
unsigned double-number dividend ud and an unsigned single-number divisor u.

MAGNIFY Resident

(n1 ---)

Alters the sprite magnification factor to be n1. The value of n1 must be 0, 1, 2 or 3.

MAX Resident

(n1 n2 --- n3)

Leave the greater n3 of the two numbers, n1 and n2.

ASCII Collating Sequence: ! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~

Appendix D The fbForth 2.0 Glossary 219

MAXLEN$ Stack-based String Library [42]

($Caddr --- max_len) “maximum length of string”

Given the address of a string constant on the data stack the word MAXLEN$ returns the
maximum allowed string length for that string constant. For example,

50 $CONST WELCOME ok:0
WELCOME MAXLEN$. 50 ok:0

MCHAR Resident

(n col row ---)

Places a square of color n at (col,row). Used in multicolor mode.

MENU Welcome Block [1]

(---)

Displays the available Load Options.

MESSAGE Resident

(n ---)

Print on the selected output device the text of system error number n. If WARNING =
0, the message will simply be printed as a number (msg #n). When WARNING = 0 in
TI Forth, it means the disk is unavailable, but this is not necessary in fbForth 2.0
because error messages are always memory resident.

The word MESSAGE now only works for predefined error messages and should not be
used to display user-defined messages as was possible with TI Forth. The reason for
this is that system messages in fbForth 2.0 now reside in cartridge ROM. The word
.LINE , q.v., can be used for this purpose.

MID$ Stack-based String Library [42]

(start end ---) (SS: str1 --- str1 str2) “mid-string”

The word MID$ produces a sub-string on the string stack, consisting of the characters
from the topmost string starting at character start and ending at character end. For
example,

$" redgreenblue" 3 7 mid$ ok:0

At this point, the topmost two strings on the string stack are as follows:

“green” (the topmost item)

“redgreenblue”

Note, as indicated in the string stack signature, the original string (str1) is retained.
Note also that the first character in the string (the leftmost character) is character
number 0.

MIN Resident

(n1 n2 --- n3)

Leave the smaller n3 of the two numbers (n1 and n2).

ASCII Collating Sequence: ! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~

220 D.3 fbForth 2.0 Word Descriptions

MINIT Resident

(---)

Initializes the monitor screen for use with MCHAR .

MINUS Resident

(n1 --- n2)

Leaves the two’s complement n2 of a number n1, i.e., negates n1.

MKBFL Resident

(---) (IS: DSKn.<blocks filename> n)

Create a blocks file from the string and number in the input stream. To create a file
named MYBLOCKS on DSK1 with room for 80 blocks, type

MKBFL DSK1.MYBLOCKS 80 ok:0

MOD Resident

(n1 n2 --- rem)

Leave the remainder rem of n1/n2, with the same sign as n1. MOD is based on M/ ,
which uses user variable S|F , q.v., to determine whether symmetric (the default) or
floored division is used. See Chapter 18 “Signed Integer Division” for more details.

MON Resident

(---)

Exit to the TI 99/4A color bar display screen and the system monitor program.
MOTION Resident

(n1 n2 spr ---)

Assigns a horizontal n1 and vertical n2 velocity to the specified sprite spr.

MOVE Resident

(addr1 addr2 n ---)

Moves the contents of n cells (16-bit contents) beginning at addr1 into n cells
beginning at addr2. The contents of addr1 is moved first, proceeding toward high
memory. This is not overlap safe for addr1 < addr2.

MULTI Resident

(---)

Converts from present display screen mode into standard Multicolor mode
configuration.

MYSELF [immediate word] Resident

(---)

Used in a colon definition. Places the code field address (cfa) of a word into its own
definition. This permits recursion.

ASCII Collating Sequence: ! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~

Appendix D The fbForth 2.0 Glossary 221

N>S Resident

(--- n) (IS: token) “number to stack”

N>S attempts to convert the next blank-delimited token in the input stream to a
number in the current radix (number base). If successful, N>S pushes the number to
the stack. Otherwise, an error message is issued and the stack is cleared:

.BASE 10 ok:0
N>S 123 ok:1
N>S 12X 12X ?

N>S is the only way to get numbers from the input stream to the stack while using
CODE: and DOES>CODE: because those words compile numbers into the dictionary
instead of pushing them to the stack as the interpreter does.

NEXT, Resident

(---)

NEXT, is one of only two words in the Assembler vocabulary that are part of the
resident dictionary. The other is ;ASM . NEXT, puts 045Fh at HERE and advances
HERE . This machine code for ALC, B *NEXT or B *R15, branches to the inner
interpreter to fetch the next word to be executed. See ASM: , ;ASM and Chapter 9
“The fbForth 2.0 TMS9900 Assembler” for more information.

NFA Resident

(pfa --- nfa)

Convert the parameter field address pfa of a definition to its name field address nfa.

NIP More Useful Stack Words etc. [41]

(n1 n2 --- n2)

Remove from the stack the number that is under the top number.

NIP$ Stack-based String Library [42]

(---) (SS: str1 str2 --- str2) “nip string”

The word NIP$ removes the string underneath the topmost string from the string
stack. For example,

$" red" ok:0
$" blue" ok:0

At this point, “blue” is on the top of the string stack, with “red” underneath it.

NIP$

At this point, “red” has been removed from the string stack, leaving “blue” as the
topmost string.

NOP Resident

(---)

A do-nothing instruction. NOP is useful for patching as in assembly code.

ASCII Collating Sequence: ! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~

222 D.3 fbForth 2.0 Word Descriptions

NULL [Literally NUL (ASCII 0)] [immediate word] Resident

(---)

There is actually no word in fbForth 2.0 with the name, ‘ NULL ’. The name field
for NULL contains an ASCII 0. Every fbForth 2.0 buffer, including the terminal
input buffer, must end with an ASCII 0. When INTERPRET reaches it, it will search
for it in the dictionary and will find what we are here calling NULL . NULL is the only
way to exit the endless loop in INTERPRET . When NULL executes, it drops the top
value on the return stack and thus returns, not to INTERPRET, but to the word that
executed INTERPRET (usually QUIT or LOAD). Here is its definition, keeping in
mind that ‘ NULL ’ represents an actual NUL (ASCII 0):

: NULL BLK @ IF ?EXEC THEN R> DROP ; IMMEDIATE

NUMBER Resident

(addr --- d)

Convert a packed character string (see footnote 5 on page 22) left at addr with the
character count in the first byte, to a signed double number d , using the current
numeric base. If a decimal point is encountered in the text, its position will be given
in DPL , but no other effect occurs. If numeric conversion is not possible, an error
message will be given.

OF [immediate word] Resident

Occurs inside a colon definition as part of the OF … ENDOF construct inside of the
CASE … ENDCASE construct.

Compile time: (4 --- addr 5)

Checks for the value 4 on the stack left there by CASE or a previous ENDOF ,
compiles (OF) , leaves its address addr for branching resolution by ENDOF and
leaves a 5 for its matching ENDOF to check.

Runtime: (n --- [] | n)

The value n is compared to the value which was on top of the stack when CASE ’s
runtime action occurred. If the numbers are identical, the words between OF and
ENDOF will be executed. Otherwise, n is put back on the stack for execution to
continue after ENDOF . See CASE and ENDOF .

OPN Resident

(---)

Opens the file whose PAB is pointed to by PAB-ADDR .

OR Resident

(n1 n2 --- n3)

Leave the bit-wise logical OR n3 of two 16-bit values, n1 and n2.

ASCII Collating Sequence: ! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~

Appendix D The fbForth 2.0 Glossary 223

OUT Resident

(--- addr)

A user variable that contains a value incremented by EMIT and EMIT8 . The user
may alter and examine OUT to control display formatting.

OUTPT Resident

(---)

Assigns the attribute OUTPUT to the file whose PAB is pointed to by PAB-ADDR .

OVER Resident

(n1 n2 --- n1 n2 n1)

Copy the second stack value n1 to the top of the stack.

OVER$ Stack-based String Library [42]

(---) (SS: str1 str2 --- str1 str2 str1) “over string”

The word OVER$ pushes a copy of the string str1 to the top of the string stack, above
str2. For example,

$" red" ok:0
$" green" ok:0
OVER$ ok:0

At this point, the string stack contains the following strings:

“red” (the topmost string)
“green”
“red”

PAB-ADDR Resident

(--- addr)

A variable containing the VDP address of the first byte of the current PAB (Peripheral
Access Block).

PAB-BUF Resident

(--- addr)

A variable which holds the address of the area in CPU RAM used as the source or
destination of the data to be transferred to/from a file. This is a file I/O word.

PAB-VBUF Resident

(--- addr)

A variable pointing to a VDP RAM buffer which serves as a temporary buffer when
transferring data to/from a file. The VDP address stored in PAB-VBUF is also stored
in the file’s PAB.

PABS Resident

(--- addr)

A user variable which points to a region in VDP RAM, which has been set aside for
creating PABs.

ASCII Collating Sequence: ! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~

224 D.3 fbForth 2.0 Word Descriptions

PAD Resident

(--- addr)

Leave the address of the text output buffer, which is a fixed offset (68 bytes in
fbForth 2.0) above HERE . Every time HERE changes, PAD is updated.

PAGE Resident

(---)

Clears the display screen and places the cursor at the top, left corner. It is a shortcut
for

CLS
0 0 GOTOXY

PANEL Resident

(x y w h ---)

Sets up a panel within the video display for SCROLL to scroll in any orthogonal
direction with or without wrapping, depending on the value of WRAP . The panel will
be w characters wide, h characters high with its upper, left corner at column x and
row y.

PAUSE Resident

(--- flag)

Checks for a keystroke and issues false if none, true if <BREAK> (<CLEAR> or
<FCTN+4>) or idles until a second keystroke before issuing false (or true if second
keystroke is <BREAK>). The words LIST , INDEX , DUMP and VLIST all call the word
PAUSE . These routines exit when flag = true. PAUSE allows the user to temporarily
halt the output by pressing any key. Pressing another key will allow continuation. To
exit one of these routines prematurely, press <BREAK> .

PDT Resident

(--- vaddr)

A constant which contains the VDP address of the Pattern Descriptor Table. Default
value is 800h. This constant can only be changed via user variable number 28h.

PFA Resident

(nfa --- pfa)

Convert the name field address nfa of a compiled definition to its parameter field
address pfa.

PI Resident
(--- f)

A floating point approximation of π to 13 significant figures. (3.141592653590)

PICK More Useful Stack Words etc. [41]

(+n --- [n])

Copy to the top of the stack the nth number down. The 0th number is the top number.
[n] means “the contents of cell n from the top of the stack”. The number n must be
positive.

ASCII Collating Sequence: ! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~

Appendix D The fbForth 2.0 Glossary 225

0 PICK is equivalent to DUP .

1 PICK is equivalent to OVER .

PICK$ Stack-based String Library [42]

(index ---) (SS: --- str) “pick string”

Given the index of a string on the string stack, copy the indexed string to the top of
the string stack. 0 PICK$ is equivalent to DUP$, 1 PICK$ is equivalent to OVER$
etc. For example,

$" blue" ok:0
$" green" ok:0
$" red" ok:0
2 PICK$ ok:0

The above causes the string “blue” to be copied to the top of the string stack.

PLAY Resident

(addr flag ---)

This word is ported from TurboForth1 code courtesy of Mark Wills.

PLAY starts the table of sound lists at address addr, depending on flag:

Flag Action

0 Do not play if either sound table is active.

1 Unconditionally play, killing all previous sound tables.

-1
Plays as sound table #2, muting sound table #1 for the duration of sound table
#2.

Sound lists consist of a list of sound commands starting with a byte count and ending
with a duration count byte (sixtieths of a second) that is not included in the byte
count. The last sound list should silence all four sound generators and end with a
duration of 0. See § 20 of the Editor/Assembler Manual for details on sound lists.

A sound table may be prepared for PLAY with DATA[…]DATA by dropping the cell
count:

DATA[<sound list>]DATA

DROP 1 PLAY

PLAYING? Resident

(--- flag)

This word is ported from TurboForth1 code courtesy of Mark Wills.

PLAYING? checks both fbForth 2.0 sound status registers, ORs them and leaves that
value on the stack as flag. If flag = 0, no sound table is active.

PLAYING? is intended for use with PLAY , not SOUND . SOUND does not use the
fbForth 2.0 sound status registers.

ASCII Collating Sequence: ! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~

226 D.3 fbForth 2.0 Word Descriptions

PREV Resident

(--- addr)

A user variable containing the address of the disk buffer most recently referenced.
The UPDATE command marks this buffer to be later written to disk.

QUERY Resident

(---)

Input 80 characters of text (or until <ENTER> is pressed) from the operator’s terminal.
Text is positioned at the address contained in TIB with IN set to 0.

QUIT Resident

(---)

Clear the return stack, stop compilation and return control to the operator’s terminal.
No message is given, including the usual ok:n .

R Resident

(--- n) (R: n --- n)

Copy the top of the return stack to the parameter stack.

R# Resident

(--- addr)

A user variable which may contain the location of an editing cursor or other file-
related function.

R->BASE Resident

(---) (R: n ---)

Restore the current base from the return stack. See BASE->R .

R/W Resident

(addr n1 flag ---)

The fig-Forth standard disk read/write linkage. The only modification to R/W for
fbForth 2.0 is that it now calls RBLK and WBLK instead of the replaced RDISK and
WDISK . The source or destination block buffer address is addr, n1 is the sequential
number of the referenced block and flag indicates whether the operation is write (flag
= 0) or read (flag = 1). R/W determines the location on mass storage, performs the
read/write and error checking.

R0 Resident

(--- addr)

A user variable containing the initial location of the return stack. Pronounced
“r zero”. See RP! .

R> Resident

(--- n) (R: n ---)

Remove the top value from the return stack and leave it on the parameter stack. See
>R and R .

ASCII Collating Sequence: ! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~

Appendix D The fbForth 2.0 Glossary 227

R>F Resident

(--- f) (R: f ---)

Moves the 8-byte floating point number f from the return stack to the parameter
stack. See F>R .

RAD/DEG Resident

(--- f)

Constant in floating point format representing degrees/radian = 0.01745329251994.

RANDOMIZE Resident

(---)

Creates an unpredictable seed for the random number generator. See details in § 5.5 .

RBLK Resident

(addr blk ---)

Read a block from the current blocks file.

RD Resident

(--- count)

The file I/O instruction that reads from the current PAB. This instruction uses
PAB-BUF and PAB-VBUF .

REC-LEN Resident

(b ---)

Stores the length b of the record for the upcoming write into the appropriate byte in
the current PAB.

REC-NO Resident

(n ---)

Writes a zero-based record number n into the appropriate location in the current PAB.

REPEAT [immediate word] Resident

Used within a colon-definition in the form:

BEGIN … WHILE … REPEAT

Compile time: (addr1 1 addr2 4 ---)

At compile-time, REPEAT processes the 0BRANCH offset addr2 and the offset from
HERE to the loop-back address addr1, which it stores at the space reserved for it at
addr1 by BEGIN , q.v. The values 1 and 4 are used for error testing.

Runtime: (---)

At runtime, REPEAT forces an unconditional branch back to just after the
corresponding BEGIN . See WHILE and BEGIN .

ASCII Collating Sequence: ! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~

228 D.3 fbForth 2.0 Word Descriptions

REPLACE$ Stack-based String Library [42]

(--- pos | -1) (SS: str1 str2 str3 --- str4 | [str1 str2]) “replace string”

The word REPLACE$ searches string str2 for the first occurrence of string str3. If it is
found, it is replaced with the string str1, the position of str3 within str2 is pushed to the
data stack, str1 and str3 are removed from the string stack and the new string str4 is
left on the string stack. For example,

If the search string str3 is not found, -1 is pushed to the data stack, str1 and str2 are left
on the string stack, ready for another search.

RESET$ Stack-based String Library [42]

(---) (SS: ---)

Resets, i.e., empties, the string stack.

REV$ Stack-based String Library [42]

(---) (SS: str1 --- str2) “reverse string”

The word REV$ replaces the topmost string on the string stack with its reversed
equivalent. For example,

$" green" REV$.$ neerg ok:0

RIGHT$ Stack-based String Library [42]

(len ---) (SS: str1 --- str1 str2) “right of string”

The word RIGHT$ causes the rightmost len characters to be pushed to the string stack
as a new string. The original string is retained. For example,

$" redgreenblue" 4 RIGHT$ ok:0

The above causes the string “blue” to be pushed to the string stack.

RLTV Resident

(---)

Assigns the attribute RELATIVE to the file whose PAB is pointed to by PAB-ADDR .

ASCII Collating Sequence: ! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~

Appendix D The fbForth 2.0 Glossary 229

RND Resident

(n1 --- n2)

Generates a positive random integer n2, such that 0 ≤ n2 < n1. See details in § 5.5 .

RNDW Resident

(--- u)

Generates a random unsigned integer u, such that 0 ≤ u ≤ FFFFh. See details in § 5.5 .

ROLL More Useful Stack Words etc. [41]

([n] … [0] +n --- [n-1] … [0] [n])

Rotate left the top n+1 numbers on the stack, resulting in the nth number down
moving to the top of the stack. The number n must be positive. The source for ROLL
was Marshall Linker via George Smyth’s “Forth Forum” column in the MANNERS
Newsletter (1985) Vol. 4(5), pp. 12 – 16.

0 ROLL is a null operation.
1 ROLL is equivalent to SWAP .
2 ROLL is equivalent to ROT .

ROT Resident

(n1 n2 n3 --- n2 n3 n1)

Rotate the top three values on the stack, bringing the third n1 to the top.

ROT$ Stack-based String Library [42]

(---) (SS: str1 str2 str3 --- str2 str3 str1) “rotate strings”

The word ROT$ rotates the top three strings to the left. The third string down (prior
to the execution of ROT$) moves to the top of the string stack. See Chapter14 for
implementation details regarding stack space limitations.

RP! Resident

(---)

A procedure to initialize the return stack pointer from user variable R0 .

RP@ Resident

(--- addr)

Returns the address addr of the current top of the return stack.

RSTR Resident

(n ---)

Restores the file whose PAB is pointed to by the current PAB to the specified record
number n.

RTRIM$ Stack-based String Library [42]

(---) (SS: str1 --- str2) “trim right of string”

The word RTRIM$ removes leading spaces from the topmost string. For example,

$" hello! " RTRIM$.$ hello! ok:0

ASCII Collating Sequence: ! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~

230 D.3 fbForth 2.0 Word Descriptions

S" [immediate word] Resident

(--- addr | []) (IS: string")

Accepts a string from the input stream (IS) until ‘"’ is encountered. When executing,
the packed string is stored at PAD and the address addr of the length byte is left on
the stack.

When compiling a word definition, SLIT is first compiled into the definition, then
the packed string. Later, when the word is executed, SLIT will push the address of
the string’s length byte to the stack and skip over the string to the word following it
in the definition.

S->D Resident

(n --- d)

Sign-extend a single number n to form a double number d.

S->F Resident

(n --- f)

Converts a single-precision number n on the stack to a floating point number f.

S0 Resident

(--- addr)

User variable that points to the base of the parameter stack. Pronounced “s zero”.
See SP! .

S0&TIB! Resident

(addr1 --- addr2)

This word is primarily for use in a 1024 KiB SAMS environment, where it is or may
be necessary to move the stack base (in S0) and the Terminal Input Buffer (in TIB),
both of which start up at the same address, viz., FFA0h. S0&TIB! forces addr1 to
AFA0h, BFA0h, CFA0h, DFA0h, EFA0h or FFA0h; copies it to the user variables, S0 and
TIB , in the table of default values so the settings will survive COLD ; and leaves the
new address on the stack as addr2. The lower limit is forced above HERE so as not to
destroy the user's dictionary.

SAMS! Resident

(---)

This word is ported from TurboForth1 code courtesy of Mark Wills.

This calls the SAMS initialization in the startup code in bank 1 to restore SAMS
mapping to initial conditions.

SAMS? Resident

(--- flag)

This word is ported from TurboForth1 code courtesy of Mark Wills.

Leaves a copy of the SAMS flag from startup as flag.

ASCII Collating Sequence: ! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~

Appendix D The fbForth 2.0 Glossary 231

SATR Resident

(--- vaddr)

A constant whose value vaddr is the VDP address of the Sprite Attribute List.
Default value is 300h. This constant can only be changed via user variable number
24h.

SAY Resident

(addr n ---)

This word is ported from TurboForth1 code courtesy of Mark Wills.

SAY needs on the stack the address addr of a block of Speech Synthesizer ROM
speech addresses and the number n of those addresses. This can be accomplished
with DATA[…]DATA . Consult Section 22 of the Editor/Assembler Manual for
details.

SBO CRU Words [5]

(addr ---)

This word expects to find on the stack the CRU address addr of the bit to be set to 1.
SBO will put this address into workspace register R12, shift it left (double it) and
execute TMS9900 instruction, SBO 0, to effect setting the bit. See § 11.3 and CRU
documentation in the Editor/Assembler Manual for more information.

SBZ CRU Words [5]

(addr ---)

This word expects to find on the stack the CRU address addr of the bit to be reset to
0. SBZ will put this address into workspace register R12, shift it left (double it) and
execute TMS9900 instruction, SBZ 0, to effect resetting the bit. See § 11.3 and
CRU documentation in the Editor/Assembler Manual for more information.

SCMP CPYBLK -- Block Copying Utility [4]

(str1 str2 --- -1 | 0 | +1)

Compares two strings with leading byte counts pointed to by str1 and str2 and leaves
the result on the stack: -1, if str1 < str2; 0, if str1 = str2; +1, if str1 > str2 .

SCR Resident

(--- addr)

A user variable containing the Forth block number most recently referenced by LIST
or EDIT .

SCRFNT Resident

(--- addr)

A user variable containing a flag indicating whether FNT should load the current
default font (flag ≠ 0) or the console font (flag = 0). Changing the value in SCRFNT
does not take effect until the next time FNT is executed.

See Chapter 13 “Screen Fonts and the Font Editor” for more detail.

ASCII Collating Sequence: ! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~

232 D.3 fbForth 2.0 Word Descriptions

SCREEN Resident

(n ---)

Changes the display screen color to the color specified n. The foreground (FG) and
background (BG) screen colors must be placed in the low-order byte of n, with FG
the high-order 4 bits and BG the low-order 4 bits, e.g., n = 27 (1Bh) for black on light
yellow. The FG color is only necessary in the text modes.

SCRN_END Resident

(--- addr)

A user variable containing the address addr of the byte immediately following the
last byte of the display screen image table to be used as the logical display screen.

SCRN_START Resident

(--- addr)

A user variable containing the address addr of the first byte of the display screen
image table to be used as the logical display screen.

SCRN_WIDTH Resident

(--- addr)

A user variable which contains the number of characters (32 or 40) that will fit across
the display screen. Used by the display screen scroller.

SCROLL Resident

(dir ---)

Scrolls the display screen panel set up by PANEL in direction dir. PANEL must be
executed at least once before SCROLL because its parameters are indeterminate after
powerup. Acceptable values for dir are

Direction Value

left 0

right 2

up 4

down 6

SEED Resident

(n ---)

Places a new seed n into the random number generator. See details in § 5.5 .

SET-PAB Resident

(---)

This instruction assumes that PAB-ADDR is set. It then zeroes out the PAB
(Peripheral Access Block) pointed to by PAB-ADDR and places the contents of PAB-
VBUF into the appropriate word of the PAB. This initializes the PAB.

ASCII Collating Sequence: ! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~

Appendix D The fbForth 2.0 Glossary 233

SGN Resident

(n --- -1 | 0 | +1)

Returns the sign of n or 0.

SIGN Resident

(n d --- d)

Stores a minus sign (ASCII 45 or 2Dh) at the current location in a converted numeric
output string in the text output buffer if n is negative. At the time n is evaluated, it is
discarded, but double number d is maintained for continued conversion until #>
removes it from the stack. Must be used between <# and #> . Using SIGN implies
that d can be negative, which means that d should be used to produce n. You should
then replace d with its absolute value (|d|) on the stack by using DABS . This can be
done by pushing d to the stack and executing SWAP OVER DABS : (d --- n |d|) prior
to <# … SIGN … #> .

SIN Resident

(f1 --- f2)

Finds the sine f2 of the floating point number f1 on the stack and leaves the result f2

on the stack.

SLA Resident

(n1 count --- n2)

Arithmetically shifts the number n1 on the stack count bits to the left, leaving the
result n2 on the stack. Shifting by count will be modulo 16 except when count = 0,
which causes 16 bits to be shifted. To create a word which does not perform a 16-bit
shift when count is zero, use the following definition for the same stack contents:

: SLA0 -DUP IF SLA ENDIF ;

SLIT Resident

(--- addr)

SLIT is similar to LIT but acts on strings instead of numbers. SLIT places the
address addr of the string following it on the stack. It modifies the top of the return
stack to point to just after the string.

SM/REM Resident

(d n --- rem quot)

A mixed magnitude math operator that performs symmetric division to leave the
signed remainder rem and signed quotient quot from a double-number dividend d and
single-number divisor n. The quotient is rounded toward zero and the remainder
given the sign of the dividend. See Chapter 18 “Signed Integer Division” for more
details.

ASCII Collating Sequence: ! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~

234 D.3 fbForth 2.0 Word Descriptions

SMASH 64-Column Editor [6]

(addr1 count1 n --- addr2 vaddr count2)

The assembly code routine that formats a line of tiny characters. It expects the
address addr1 of the line in memory, the number count1 of characters per line, and the
line number n to which it is to be written. It returns on the stack the line buffer
address addr2, a VDP address vaddr, and a byte count count2. See CLIST and
CLINE .

SMTN Resident

(--- vaddr)

A constant whose value is the VDP address of the Sprite Motion Table. Default value
is 780h. This constant can only be changed via user variable number 26h.

SMUDGE Resident

(---)

Used during word definition to toggle the smudge bit in the length byte of a
definition’s name field. This prevents an uncompleted definition from being found
during dictionary searches until compilation is completed without error. SMUDGE is
simply defined as

HEX : SMUDGE LATEST 20 TOGGLE ;

SOUND Resident

(pitch vol ch# ---)

This word is ported from TurboForth1 code courtesy of Mark Wills.

Pitch pitch, volume vol and channel ch# are as described in the Editor/Assembler
Manual in Section 20. Pitch values range from 0 – 1023, 0 representing the highest
pitch. Volume values range from 0 – 15, 15 representing silence. Channels 0 – 2
represent the corresponding tone generators and channel 3 is the noise generator.

SOUND uses the pitch value for setting the type of noise for the noise generator
(channel 3). Shift rates are 0 – 3. Noise type can be white noise (0) or periodic noise
(4). The pitch value to pass to SOUND is the sum of shift rate and noise type and
ranges from 0 – 7.

Once a tone or noise generator is started, the sound/noise continues until silenced by
executing SOUND with a volume of 15. The pitch must be supplied, but is irrelevant.
The following Forth code will silence channel 2:

0 15 2 SOUND

SP! Resident

(---)

A procedure to initialize the parameter stack pointer from S0 , the user variable that
points to the base of the parameter stack.

ASCII Collating Sequence: ! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~

Appendix D The fbForth 2.0 Glossary 235

SP@ Resident

(--- addr)

This word returns the address of the top of the stack as it was before SP@ was
executed, e.g.,

1 2 SP@ @ . . . 2 2 1 ok:0

SPACE Resident

(---)

Transmit a blank character (ASCII 32|20h) to the output device.

SPACES Resident

(n ---)

Transmit n blank characters (ASCII 32|20h) to the output device.

SPCHAR Resident

(n1 n2 n3 n4 char ---)

Defines a character char in the Sprite Descriptor Table to have the pattern composed
of the 4 words (cells) on the stack.

SPDCHAR Resident

(addr cnt chr ---)

Same as DCHAR , but for sprite pattern definitions because SPDTAB does not always
start at the same VRAM address as PDT.

SPDTAB Resident

(--- vaddr)

A constant whose value is the VDP address of the Sprite Descriptor Table. Default
value is 800h. Notice that this coincides with the Pattern Descriptor Table. This
constant can only be changed via user variable number 42h.

SPLIT Resident

(---)

Converts from present display screen mode into standard Split mode configuration.

SPLIT2 Resident

(---)

Converts from present display screen mode into standard Split2 mode configuration.

SPRCOL Resident

(n spr ---)

Changes color of the given sprite number spr to the color n specified.

SPRDIST Resident

(spr1 spr2 --- n)

Returns on the stack the square of the distance n between two specified sprites, spr1

ASCII Collating Sequence: ! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~

236 D.3 fbForth 2.0 Word Descriptions

and spr2. Distance is measured in pixels and the maximum distance that can be
detected accurately is 181 pixels.

SPRDISTXY Resident

(dotcol dotrow spr --- n)

Places on the stack n, the square of the distance between the point (dotcol,dotrow)
and a given sprite spr. Distance is measured in pixels and the maximum distance that
can be detected accurately is 181 pixels.

SPRGET Resident

(spr --- dotcol dotrow)

Returns the dot column dotcol and dot row dotrow position of sprite spr.

SPRITE Resident

(dotcol dotrow n char spr ---)

Defines sprite number spr to have the specified location (dotcol,dotrow), color n, and
character pattern char. The size of the sprite will depend on the magnification factor.

SPRPAT Resident

(char spr ---)

Changes the character pattern of a given sprite spr to char.

SPRPUT Resident

(dotcol dotrow spr ---)

Places a given sprite spr at location (dotcol,dotrow).

SQNTL Resident

(---)

Assigns the attribute SEQUENTIAL to the file whose PAB is pointed to by PAB-
ADDR .

SQR Resident

(f1 --- f2)

Finds the square root of a floating point number f1 and leaves the result f2 on the
stack.

SRA Resident

(n1 count --- n2)

Arithmetically shifts n1 count bits to the right and leaves the result n2 on the stack.
Shifting by count will be modulo 16 except when count = 0, which causes 16 bits to
be shifted. To create a word which does not perform a 16-bit shift when count is
zero, use the following definition for the same stack contents:

: SRA0 -DUP IF SRA ENDIF ;

ASCII Collating Sequence: ! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~

Appendix D The fbForth 2.0 Glossary 237

SRC Resident

(n1 count --- n2)

Performs a circular right shift of count bits on n1 leaving the result n2 on the stack. If
count is 0, 16 bits are shifted. To create a word which does not perform a 16-bit shift
when count is zero, use the following definition for the same stack contents:

: SRC0 -DUP IF SRC ENDIF ;

SRL Resident

(n1 count --- n2)

Performs a logical right shift of count bits on n1 and leaves the result n2 on the stack.
If count is 0, 16 bits are shifted. To create a word which does not perform a 16-bit
shift when count is zero, use the following definition for the same stack contents:

: SRL0 -DUP IF SRL ENDIF ;

SSDT Resident

(vaddr ---)

No longer required for initializing sprites. Use DELALL , q.v., instead. SSDT places
the Sprite Descriptor Table at the specified VDP address vaddr and initializes all
sprite tables. The address given must be on an even 2K boundary. See § 6.6.2
“Sprite Initialization” for details.

STAT Resident

(--- b)

Reads the status of the current PAB and returns the status byte b to the stack. See the
table in § 8.5 following the explanation of STAT for the meaning of each bit of the
status byte.

STATE Resident

(--- addr)

A user variable containing the compilation state. Zero indicates execution and a non-
zero value indicates compilation. The compilation-state value for fbForth 2.0
(inherited from TI Forth) is C0h. The reason for this value is that the length byte of a
found word, which is also immediate, has the high-order two bits set (see Chapter 12,
“fbForth 2.0 Dictionary Entry Structure” for details). INTERPRET compares the
value of STATE with the length byte to decide whether to execute a word during
compilation.

STCR CRU Words [5]

(n1 addr --- n2)

Performs the TMS9900 STCR instruction. The CRU base address addr will be
shifted left one bit and stored in workspace register R12 prior to executing the
TMS9900 STCR instruction. There will be n1 bits transferred from the CRU to the
stack as n2, where the following condition, n1 ≤ 15, is enforced by n1 AND 0Fh. If

ASCII Collating Sequence: ! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~

238 D.3 fbForth 2.0 Word Descriptions

n1 = 0, 16 bits will be transferred. For program clarity, you may certainly use n1 = 16
to transfer 16 bits because n1 = 0 will be the value actually used by the final machine
code. See § 11.3 and CRU documentation in the Editor/Assembler Manual for more
information.

STREAM Resident

(addr n ---)

This word is ported from TurboForth1 code courtesy of Mark Wills.

STREAM needs on the stack the address addr of a block of raw speech data to be
spoken and the number of cells n in the buffer. This can be accomplished with
DATA[…]DATA . STREAM will feed the raw speech data to the Speech Synthesizer.

SV Resident

(count ---)

Performs the file I/O save operation. The number of bytes count to be saved will be
the size of the file on disk. The file’s PAB must be set up and be the current PAB, to
which PAB-ADDR points, before executing this word.

SWAP Resident

(n1 n2 --- n2 n1)

Exchange the top two values on the stack.

SWAP$ Stack-based String Library [42]

(---) (SS: str1 str2 --- str2 str1) “swap string”

The word SWAP$ swaps the topmost two strings on the string stack. For example,

$" Hello, World!" ok:0
$" How are you?" ok:0
SWAP$ ok:0

At this point, the string “Hello, World!” is the topmost string on the string stack.

SWCH Printing Routines [19]

(---)

A special purpose word which permits EMIT to output characters to an RS232 device
rather than to the screen. See UNSWCH .

SWPB Resident

(n1 --- n2)

Reverses the order of the two bytes in n1 and leaves the new number as n2.

SYS$ Resident

(--- addr)

A user variable that contains the address of the system support entry point.

ASCII Collating Sequence: ! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~

Appendix D The fbForth 2.0 Glossary 239

SYSTEM Resident

(n ---)

Calls the system synonyms. You must specify an offset n into a jump table for the
routine you wish to call. The offset n must be one of the predefined even numbers.
See system Forth block 33 for offsets 0 – 26.

S|F Resident

(--- addr) “s or f”

User variable that determines whether M/ uses symmetric or floored integer division.
A value of zero (the default) specifies “symmetric” integer division (T-division) and a
non-zero value, floored integer division (F-division). See Chapter 18 “Signed Integer
Division” for more details.

TALKING? Resident

(--- flag)

This word is ported from TurboForth1 code courtesy of Mark Wills.

TALKING? returns flag = 0 if the Speech Synthesizer is idle, otherwise, flag = 1.

It is a good idea to use TALKING? to insure the Speech Synthesizer is not busy before
executing SAY or STREAM .

TAN Resident

(f1 --- f2)

Finds the tangent of the floating point number (f1 = angle in radians) on the stack and
leaves the result f2.

TASK Resident

(---)

A no-operation word or null definition, TASK is the last word defined in the resident
Forth vocabulary of fbForth 2.0 and the last word that cannot be forgotten using
FORGET . Its definition is simply : TASK ; . Its address can be used to BSAVE a
personalized fbForth 2.0 system disk (see Chapter 11): ' TASK 21 BSAVE (Be
sure to back up the original disk before trying this!). By redefining TASK at the
beginning of an application, you can mark the boundary between applications. By
FORGETting TASK and re-compiling, an application can be discarded in its entirety.
You will be able to FORGET each instance of the definition of TASK except the first
one described above.

TB CRU Words [5]

(addr --- flag)

TB performs the TMS9900 TB instruction. The bit at CRU address addr is tested by
this instruction. Its value (flag = 1|0) is returned to the stack. The CRU base
address addr will be shifted left one bit and stored in workspace register R12 prior to
executing the TMS9900 instruction, TB 0, to effect testing the bit. See § 11.3 and
CRU documentation in the Editor/Assembler Manual for more information.

ASCII Collating Sequence: ! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~

240 D.3 fbForth 2.0 Word Descriptions

TCHAR 64-Column Editor [6]

(--- addr)

Points to the array that holds the tiny character definitions for the 64-column editor.
See CLIST .

TEXT Resident

(---)

Converts from present display screen mode into standard Text mode configuration.

TEXT80 Resident

(---)

Converts from present display screen mode into Text80 mode configuration if your
computer has that facility.

THEN [immediate word] Resident

(---)

An alias for ENDIF .

TIB Resident

(--- addr)

A user variable containing the address of the terminal input buffer.

TIF2FBF TI Forth Block Utilities

(---) (IS: srcStrtBlk srcEndBlk DSKn dstStrtBlk dstFile)

Copies the range of blocks (screens) srcStrtBlk – srcEndBlk from TI Forth disk DSKn
to fbForth blocks file dstFile, starting at block dstStrtBlk.

TIFBLK TI Forth Block Utilities

(---) (IS: blk DSKn)

Lists block (screen) blk of TI Forth disk DSKn to the display. The display will pause
for user intervention in Text mode due to wrapping 64-byte lines on a 40-column
display.

TIFIDX TI Forth Block Utilities

(---) (IS: strtBlk endBlk DSKn)

Lists the index (line #0) lines of a range of blocks (screens) strtBlk – endBlk of TI
Forth disk DSKn to the display. The display will pause for user intervention if the list
requires scrolling.

TIFVU TI Forth Block Utilities

(IS: blk DSKn)
Starts the TI Forth disk browser/copier at block (screen) blk of TI Forth disk DSKn.
The browser is patterned after the fbForth block editors, allowing scrolling left and
right by panels and blocks. The user may also copy a range of TI Forth blocks to an
fbForth blocks file, which must have been created prior to entering the
browser/copier.

ASCII Collating Sequence: ! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~

Appendix D The fbForth 2.0 Glossary 241

TOGGLE Resident

(addr b ---)

Complement (XOR) the contents of the byte at addr by the bit pattern of byte b.

TOKEN Resident

(delim --- addr | []) (IS: string<delim>)

TOKEN gets a string ending with delim from the input stream (IS) into PAD as a
packed string and passes the address addr of the string’s length byte on the stack if
interpreting (command line or loading), but compiles the packed string to HERE , with
nothing to the stack, if compiling.

TOKEN is used by several words in the resident dictionary, including MKBFL ,
USEBFL , S" , ." , WLITERAL and USEFFL .

TRACE TRACE -- Colon Definition Tracing [18]

(---)

Forces colon definitions that follow it to be compiled in such a way that their
execution can be traced. Once a routine has been compiled with the TRACE option, it
may be executed with or without a trace. To implement a trace, type TRON before
execution. To execute without a trace, type TROFF . Colon definitions that have been
compiled under the TRACE option must be recompiled under the UNTRACE option to
remove the tracing capability. TRACE and UNTRACE can be used alternately to select
words to be traced. See TRON , TROFF , UNTRACE and § 5.4 .

TRAVERSE Resident

(addr1 n --- addr2)

Traverse the name field of a fig-Forth variable-length name field. The starting point
addr1 is the address of either the length byte or the last letter. If n = 1, the direction is
toward high memory; if n = -1, the direction is toward low memory. The resulting
address addr2 points to the other end of the name.

TRIAD Printing Routines [19]

(blk ---)

Display on the RS232 device the three Forth blocks that include block number blk,
beginning with a Forth block evenly divisible by three. Output is suitable for source
text records and includes a reference line at the bottom, “fbForth --- a TI-Forth/fig-
Forth extension”.

TRIADS Printing Routines [19]

(blk1 blk2 ---)

May be thought of as a multiple TRIAD , q.v. You must specify a Forth block range.
TRIADS will execute TRIAD as many times as necessary to cover that range.

TRIM$ Stack-based String Library [42]

(---) (SS: str1 --- str2) “trim string”

The word TRIM$ removes both leading and trailing spaces from the topmost string.
For example,

ASCII Collating Sequence: ! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~

242 D.3 fbForth 2.0 Word Descriptions

$" hello! " TRIM$.$ hello! ok:0

TROFF TRACE -- Colon Definition Tracing [18]

(---)

Turn off tracing of words compiled with the TRACE option. See TRON , TRACE ,
UNTRACE and § 5.4 .

TRON TRACE -- Colon Definition Tracing [18]

(---)

Turn on tracing of words compiled with the TRACE option. See TROFF , TRACE ,
UNTRACE and § 5.4 .

TRUNC Resident

(f1 --- f2)

Truncates f1, leaving the integer portion f2 on the stack.

TUCK More Useful Stack Words etc. [41]

(n1 n2 --- n2 n1 n2)

Put a copy of the top number under the top two numbers on the stack.

TYPE Resident

(addr count ---)

Transmit count characters from addr to the selected output device.

U Resident

(--- n)

Places the contents n of workspace register UP (R8) on the stack. Register U
contains the base address of the user variable area. This is quicker than executing U0
@ , which accomplishes the same thing.

U* Resident

(u1 u2 --- ud)

Leave the unsigned double number product ud of two unsigned numbers, u1 and u2.

U. Resident

(u ---)

Prints an unsigned number u to the output device.

U.R Resident

(u n ---)

Prints an unsigned number u right justified in a field of width n.

U/ Resident

(ud u --- urem uquot)

Leave the unsigned remainder urem and unsigned quotient uquot from the unsigned
double dividend ud and unsigned divisor u.

ASCII Collating Sequence: ! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~

Appendix D The fbForth 2.0 Glossary 243

U0 Resident

(--- addr)

A user variable that points to the base of the user variable area.

U< Resident

(u1 u2 --- flag)

Leaves a true flag if u1 is less than u2, else leaves a false flag.

UCASE$ Stack-based String Library [42]

(---) (SS: str1 --- str2) “convert to upper case”

The word UCASE$ converts all lower case characters in the topmost string to upper
case. For example,

$" hello world! 1234" UCASE$.$ HELLO WORLD! 1234 ok:0

UCONS$ Resident

(--- addr)

A user variable which contains the base address of the user variable initial value
table, which is used to initialize the user variables at a COLD start.

UD. Resident

(ud ---)

Prints an unsigned double number ud to the output device.

UD.R Resident

(ud n ---)

Prints an unsigned double number ud right justified in a field of length n.

UM/MOD

(ud u --- urem uquot)

See U/ . This word is not in fbForth 2.0, but is identical to U/ and is referenced
here because of the inclusion of ANS Forth words SM/REM and FM/MOD , q.v.

UNDRAW Resident

(---)

Sets DMODE to 1. This means that dots are plotted in the off mode.

UNFORGETABLE [sic] Resident

(addr --- flag)

Decides whether or not a word can be forgotten. A true flag is returned if the address
is not located between FENCE and HERE . Otherwise, a false flag is left. See
FORGET . It is possible to set the value of FENCE to a value that is actually less than
the address of the end of the last word (TASK) in the core dictionary such that
UNFORGETABLE [sic] will report false. However, FORGET will still trap that error.

ASCII Collating Sequence: ! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~

244 D.3 fbForth 2.0 Word Descriptions

UNSWCH Printing Routines [19]

(---)

Causes the computer to send output to the display screen instead of an RS232 device.
See SWCH .

UNTIL [immediate word] Resident

Occurs within a colon-definition in the form:

BEGIN … UNTIL

Compile time: (addr 1 ---)

UNTIL compiles (0BRANCH) and an offset from HERE to addr, which it stores at the
space reserved for it at addr by BEGIN , q.v. The value 1 is used for error testing.

Runtime: (flag ---)

UNTIL controls the conditional branch back to the corresponding BEGIN . If flag is
false, execution returns to just after BEGIN ; if true, execution continues ahead.

UNTRACE TRACE -- Colon Definition Tracing [18]

(---)

Colon definitions that have been compiled under the TRACE option must be
recompiled under the UNTRACE option to remove the tracing capability. TRACE and
UNTRACE can be used alternately to select words to be traced.

UPDATE Resident

(---)

Marks the most recently referenced block pointed to by PREV as altered. The block
will subsequently be transferred automatically to disk should its buffer be required
for storage of a different block. See FLUSH .

UPDT Resident

(---)

Assigns the attribute UPDATE to the file whose PAB is pointed to by PAB-ADDR .

USE Resident

(--- addr)

A user variable containing the address of the block buffer to use next as the least
recently written.

USEBFL [immediate word] Resident

(---) (IS: DSKn.<blocks file>)

Selects the blocks file from the input stream to be the current blocks file. USEBFL is
a state-smart word that can be used in either execution or compilation mode.

Usage: USEBFL DSK1.MYBLOCKS

ASCII Collating Sequence: ! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~

Appendix D The fbForth 2.0 Glossary 245

USEFFL [immediate word] Resident

(---) (IS: DSKn.)

Selects the user-defined font file from the input stream to be the current font file.
USEFFL is a state-smart word that can be used in either execution or compilation
mode. The font file should be 2048 bytes long and define 8-byte character patterns
for ASCII characters 0 – 255. It can be shorter than 2048 bytes, but not longer. If the
file is found, SCRFNT , q.v, will be set to -1 so that the user’s font will be loaded the
next time FNT is executed. If the file is not a “PROGRAM” file or is longer than
2048 bytes, FNT will issue an error message and reload the default font.

If the font patterns do not start at byte 0 of the file, as with TI Writer’s CHARA1 and
CHARA2 (offset 6 bytes), the patterns will be illegible. The font editor FONTED ,
q.v., can be used to change the font file’s registration to load properly.

Usage: USEFFL DSK1.MYFONT

USER Resident

(n ---)

A defining word used in the form:

n USER cccc

which creates a user variable cccc . The parameter field of cccc contains n as a
fixed offset relative to the user variable base address pointed to by workspace register
UP (R8) for this user variable. When cccc is later executed, it places the sum of its
offset and the user area base address on the stack as the storage address of that
particular variable. You should only use the even numbers 6Eh – 7Eh for n—enough
for 9 user variables.

Even if you use odd offsets, storage/retrieval is always on even-address boundaries
one byte less. However, USER does not check that the definition is within the 80h
size allotted to the user variable table.

VAL$ Stack-based String Library [42]

(--- d) (SS: str ---)

The word VAL$ uses NUMBER to convert the topmost string on the string stack to a
double number d (2-cell, 32-bit integer) on the data stack. An error occurs if the
string cannot be represented as a double number. An erroneous value (but, without
an error report) will result if a convertible number is outside the signed, 32-bit range:
-2147483648 – 2147483647. Examples:

$" 9900" VAL$ D. 9900 ok:0
$" 9900" VAL$ DROP . 9900 ok:0
$" 1234567890" VAL$ D. 1234567890 ok:0
$" 9.900" VAL$ D. 9.900 ok:0
$" 9.945" $" 1234.0" D. D. 1234.0 994.5 ok:0

ASCII Collating Sequence: ! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~

246 D.3 fbForth 2.0 Word Descriptions

VAND Resident

(b vaddr ---)

Performs a logical AND on the byte at the specified VDP location vaddr and the
given byte b. The result byte is stored back into the VDP address.

VARIABLE Resident
(n ---) (IS: <new name>)

A defining word used in the form:

n VARIABLE cccc

When VARIABLE is executed, it creates the definition cccc with its parameter field
initialized to n. When cccc is later executed, the address of its parameter field
(containing n) is left on the stack, so that a fetch or store may access this location.

VCHAR Resident

(col row count char ---)

Prints on the display screen a vertical stream of length count of the specified
character char. The first character of the stream is located at (col,row). Rows and
columns are numbered from 0 beginning at the upper left of the display screen.
VCHAR does not check to see whether (col,row) is within the screen buffer. Upon
reaching the end of the screen buffer, it wraps to the top of the same column. This is
different from TI Forth, which wraps to the next column and then to (0,0), filling the
screen buffer if count is high enough. This behavior will be changed in the next build
of fbForth 2.0 to conform to how TI Basic and TI Extended Basic implement this
function, i.e., in the next build, VCHAR will throw an error if it would start outside the
screen buffer and it will wrap to (0,0) upon reaching the end of the screen buffer, as it
does now.

VDPMDE Resident

(--- addr)

A user variable used by the mode changing words TEXT80 , TEXT , GRAPHICS ,
MULTI , GRAPHICS2 , SPLIT and SPLIT2 to hold 0 – 6, respectively. VMODE , q.v.,
also changes VDPMDE .

VFILL Resident

(vaddr count b ---)

Fills count locations beginning at the given VDP address vaddr with the specified
byte b.

VLIST Resident

(---)

Prints the names of all words defined in the CONTEXT vocabulary. Note that VLIST
will display the names of even ill-defined words in the dictionary that cannot be
found with ' , -FIND or (FIND) , q.v., because their smudge bits are set. See
SMUDGE and PAUSE .

ASCII Collating Sequence: ! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~

Appendix D The fbForth 2.0 Glossary 247

VMBR Resident

(vaddr addr count ---)

Reads count bytes beginning at the given VDP address vaddr and places them at
addr.

VMBW Resident

(addr vaddr count ---)

Writes count bytes from addr into VDP beginning at the given VDP address vaddr.

VMODE Resident

(n ---)

Changes the VDP mode to mode n, corresponding to the values shown in the entry
for VDPMDE above.

VMOVE Resident

(vaddr1 vaddr2 n ---)

Move a block of n bytes of VRAM from vaddr1 to vaddr2, all in VRAM, proceeding
toward high memory. This is not overlap safe for vaddr1 < vaddr2.

VOC-LINK Resident

(--- addr)

A user variable containing the address of a field in the definition of the most recently
created vocabulary. All vocabulary names are linked by these fields to allow control
for forgetting with FORGET through multiple vocabularies.

VOCABULARY Resident

(---)

A defining word used in the form:

VOCABULARY cccc

to create a vocabulary definition cccc . Subsequent use of cccc will make it the
CONTEXT vocabulary which is searched first by INTERPRET . The sequence cccc
DEFINITIONS will also make cccc the CURRENT vocabulary into which new
definitions are placed.

cccc will be so chained as to include all definitions of the vocabulary in which cccc
is itself defined. All vocabularies ultimately chain to Forth. By convention,
vocabulary names are to be declared IMMEDIATE . See VOC-LINK .

VOR Resident

(b vaddr ---)

Performs a logical OR on the byte at the specified VDP address and the given byte b.
The result byte is stored back into the VDP address.

VRBL Resident

(---)

Assigns the attribute VARIABLE to the file whose PAB is pointed to by PAB-ADDR .

ASCII Collating Sequence: ! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~

248 D.3 fbForth 2.0 Word Descriptions

VSBR Resident

(vaddr --- b)

Reads a single byte from the given VDP address vaddr and places its value b on the
stack.

VSBW Resident

(b vaddr ---)

Writes a single byte b into the given VDP address vaddr.

VWTR Resident

(b n ---)

Writes the given byte b into the specified VDP write-only register n.

VXOR Resident

(b vaddr ---)

Performs a logical XOR on the byte at the specified VDP address vaddr and the given
byte b. The result byte is stored back into the VDP address vaddr.

WARNING Resident

(--- addr)

A user variable (initialized by COLD to 1 at system startup), containing a value
controlling messages.

If WARNING > 0, full-text system error messages are displayed by MESSAGE and
ERROR , which executes MESSAGE .

If WARNING = 0, messages will be presented by number (msg #n). In TI Forth, it
means the disk is unavailable, but this is not necessary in fbForth 2.0 because error
messages are always memory resident.

If WARNING < 0 when ERROR executes, ERROR will execute (ABORT) , which can be
redefined to execute a user-specified procedure instead of the default ABORT .

See MESSAGE , (ABORT) , ERROR and ?ERROR for more detail.

WBLK Resident

(addr blk ---)

Write a block to the current blocks file.

WHERE Resident

(n1 n2 ---)

When an error occurs on a LOAD instruction, typing WHERE will bring you into the
40/80-column editor and place the cursor at the exact location of the error. WHERE
consumes the two numbers, n1 and n2, left on the stack by the LOAD error.

WHERE (EDITOR2 Vocabulary) 64-Column Editor [6]

(n1 n2 ---)

When an error occurs on a LOAD instruction, typing WHERE will bring you into the 64-
column editor and place the cursor at the exact location of the error. WHERE
consumes the two numbers, n1 and n2, left on the stack by the LOAD error.

ASCII Collating Sequence: ! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~

Appendix D The fbForth 2.0 Glossary 249

WHILE [immediate word] Resident

Occurs in a colon-definition in the form:

BEGIN … WHILE (true part) … REPEAT

Compile time: (addr1 1 --- addr1 1 addr2 4)

WHILE emplaces (0BRANCH) and leaves addr2 of the reserved offset. The stack
values will be resolved by REPEAT . The values 1 and 4 are used for error checking.

Runtime: (flag ---)

WHILE selects conditional execution based on flag. If flag is true (non-zero), WHILE
continues execution of the true part through to REPEAT , which then branches back to
BEGIN . If flag is false (zero), execution skips to just after REPEAT , exiting the
structure.

WIDTH Resident

(--- addr)

A user variable containing the maximum number of letters saved in the compilation
of a definition’s name. It must be 1 – 31, with a default value of 31. The name
character count and its natural characters are saved up to the value in WIDTH . The
value may be changed at any time within the above limits.

WITHIN More Useful Stack Words etc. [41]

(n1 n2 n3 --- flag)

Result flag is true (1) if n2 ≤ n1 < n3 and false (0) otherwise.

WLITERAL [immediate word] Resident

Compile time (---) Runtime (--- addr) Interpreting (--- addr)

(IS: <space-delimited string>)

During compilation, WLITERAL compiles SLIT and the space-delimited string, which
follows WLITERAL in the input stream, into the dictionary. At runtime, SLIT will
push to the stack the address of the string’s length byte and change IP to point to the
Forth word following the string.

During execution, WLITERAL simply pushes to the stack the address of the string’s
length byte.

Used in the form: WLITERAL cccc

WORD Resident

(char ---)

Read the text characters from the input stream being interpreted until a delimiter char
is found, storing the packed character string (see footnote 5 on page 22) beginning at
the dictionary buffer HERE . WORD leaves the character count in the first byte
followed by the input characters and ends with two or more blanks. Leading
occurrences of char are ignored. If BLK is zero, text is taken from the terminal input
buffer, otherwise from the disk block stored in BLK . See BLK , IN .

ASCII Collating Sequence: ! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~

250 D.3 fbForth 2.0 Word Descriptions

WRAP Resident

(--- addr)

A user variable containing the wrapping flag for SCROLL . A non-zero value signals
SCROLL to wrap the disappearing row or column of the panel set up by PANEL to the
opposite side of the panel. The initial value of WRAP is 0.

WRT Resident

(count ---)

Performs the file I/O write operation. You must specify the number of bytes count to
be written.

XMLLNK Resident

(addr ---)

Links a Forth program to a routine in ROM or to a routine located in the memory
expansion unit. A ROM address addr or XML vector must be specified as in the
Editor/Assembler Manual.

XOR Resident

(n1 n2 --- n3)

Leave n3, the bitwise logical exclusive OR (XOR) of n1 and n2.

[[immediate word] Resident

(---)

Used in a colon-definition in the form:

: xxxx [words] more ;

Suspend compilation. The words after [are executed, not compiled. This allows
calculation or compilation exceptions before resuming compilation with] . See
LITERAL and] .

[COMPILE] [immediate word] Resident

(---)

Used in a colon definition in the form: : xxxx [COMPILE] FORTH ;

[COMPILE] will force the compilation of an immediate definition that would
otherwise execute during compilation. The above example will select the Forth
vocabulary when xxxx executes rather than at compile time.

[DCHAR] Resident

(addr cnt chr vaddr ---)

Helper routine for DCHAR and SPDCHAR.

\ [immediate word] Resident

(---) (IS: comment)

\ is used in the form:

\ cccc

ASCII Collating Sequence: ! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~

Appendix D The fbForth 2.0 Glossary 251

It starts a rest-of-line line comment that will not be compiled if it occurs in a
definition. It causes the interpreter to ignore the rest of the line of the input stream
(block or TIB). For blocks, a line is 64 characters, even though there are no actual
terminator characters until the end of the block. \ may occur during execution or in a
colon definition. As with all Forth words, a blank after \ is required. This is most
useful for commenting Forth source code in blocks.

] Resident

(---)

Resume compilation to the completion of a colon definition. See [.

]DATA [immediate word] Resident

(---)

]DATA closes a DATA[…]DATA construct that compiles numbers and leaves their
beginning address and cell count on the stack. If compiling within another definition,
]DATA stores the cell count between the compiled DATA[] and the first number of
the array.

^ Resident

(f1 f2 --- f3)

Returns f3 on the stack as f1 raised to the f2 power. The operands must be floating
point numbers.

ASCII Collating Sequence: ! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~

252 Appendix E Differences: fbForth 2.0, fbForth 1.0 and TI Forth

Appendix E Differences: fbForth 2.0,
fbForth 1.0 and TI Forth

This appendix will detail fbForth 2.0 changes from fbForth 1.0 and TI Forth. This will include
words that have been added, removed, re-purposed, deprecated and whose descriptions have
changed (usually means “clarified”). All of those words, except those removed, will also be
discussed elsewhere in the manual where appropriate, including the fbForth 2.0 Glossary. Even
some of the removed words will be discussed elsewhere as necessary. Words that have been
hoisted into the kernel (resident dictionary) will also be discussed.

 E.1 TI Forth Words not in fbForth 2.0

Descriptions of words appearing in the comments here that are part of fbForth 2.0 may be found
in Appendix D “The fbForth 2.0 Glossary”.

!"

(!")

-64SUPPORT Now type MENU for options: 6 LOAD

-ASSEMBLER Now type MENU for options: 21 LOAD

-BSAVE Words loaded are now part of resident dictionary.

-CODE Words loaded are now part of resident dictionary.

-COPY CPYBLK replaces contents. Now type MENU for options: 4 LOAD

-CRU Now type MENU for options: 5 LOAD

-DUMP Now type MENU for options: 16 LOAD

-EDITOR Words loaded are now part of resident dictionary.

-FILE Words loaded are now part of resident dictionary.

-FLOAT Words loaded are now part of resident dictionary.

-GRAPH Words loaded are now part of resident dictionary.

-GRAPH1 Words loaded are now part of resident dictionary.

-GRAPH2 Words loaded are now part of resident dictionary.

-MULTI Words loaded are now part of resident dictionary.

-PRINT Now type MENU for options: 19 LOAD

-SPLIT Words loaded are now part of resident dictionary.

-SYNONYMS Words loaded are now part of resident dictionary except FORMAT-DISK ,
which has been removed.

ASCII Collating Sequence: ! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~

Appendix E Differences: fbForth 2.0, fbForth 1.0 and TI Forth 253

-TEXT Words loaded are now part of resident dictionary.

-TRACE Now type MENU for options: 18 LOAD

-VDPMODES Words loaded are now part of resident dictionary.

>ARG No longer a high-level Forth word

>FAC No longer a high-level Forth word

ARG No longer a high-level Forth word

B/BUF$ User variable no longer used.

B/SCR$ User variable no longer used.

CHAR-CNT! No longer a high-level Forth word

CHAR-CNT@ No longer a high-level Forth word

CHK-STAT No longer a high-level Forth word

CLR-STAT No longer a high-level Forth word

DDOT No longer a high-level Forth word

DISK-HEAD

DISK_HI User variable no longer used.

DISK_LO User variable no longer used.

DISK_SIZE User variable no longer used.

DR0

DR1

DR2

DRIVE

DTEST

EDITOR1 No EDITOR1 vocabulary any longer

F.R Use F. or FFMT. to compose a replacement definition if needed.

FAC No longer a high-level Forth word

FAC->S No longer a high-level Forth word

FAC> No longer a high-level Forth word

FAC>ARG No longer a high-level Forth word

FADD No longer a high-level Forth word

FDIV No longer a high-level Forth word

FF. Use FFMT.

FF.R Use FFMT. to compose a replacement definition if needed.

ASCII Collating Sequence: ! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~

254 E.1 TI Forth Words not in fbForth 2.0

FLD Unused user variable removed.

FMUL No longer a high-level Forth word

FORMAT-DISK

FORTH-COPY

FORTH_LINK User variable no longer used. Its function is part of FORTH (Forth vocabulary
declaration word).

FSUB No longer a high-level Forth word

GET-FLAG No longer a high-level Forth word

OFFSET User variable no longer used.

PUT-FLAG No longer a high-level Forth word

RDISK Replaced by RBLK .

S->FAC No longer a high-level Forth word

SCOPY Replaced by CPYBLK .

SCRTCH Never should have been implemented!

SETFL No longer a high-level Forth word

SMOVE Replaced by CPYBLK .

STR No longer a high-level Forth word

STR. No longer a high-level Forth word

VAL No longer a high-level Forth word

WDISK Replaced by WBLK .

ASCII Collating Sequence: ! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~

Appendix E Differences: fbForth 2.0, fbForth 1.0 and TI Forth 255

 E.2 fbForth 1.0 Words not in fbForth 2.0

Descriptions of words appearing in the comments here that are part of fbForth 2.0 may be found
in Appendix D “The fbForth 2.0 Glossary”.

>ARG No longer a high-level Forth word

>FAC No longer a high-level Forth word

>ROA No longer needed because the GPL/XML floating point routines that
modified the rollout area have been replaced.

ARG No longer a high-level Forth word

BPOFF No longer needed

CHAR-CNT! No longer a high-level Forth word

CHAR-CNT@ No longer a high-level Forth word

CHK-STAT No longer a high-level Forth word

CLR-STAT No longer a high-level Forth word

DBF No longer needed

DDOT No longer a high-level Forth word

EDITOR1 No EDITOR1 vocabulary any longer

F.R Use F. or FFMT. to compose a replacement definition if needed.

FAC No longer a high-level Forth word

FAC->S No longer a high-level Forth word

FAC> No longer a high-level Forth word

FAC>ARG No longer a high-level Forth word

FADD No longer a high-level Forth word

FDIV No longer a high-level Forth word

FF. Use FFMT.

FF.R Use FFMT. to compose a replacement definition if needed.

FLD Unused user variable removed.

FMUL No longer a high-level Forth word

FSUB No longer a high-level Forth word

GET-FLAG No longer a high-level Forth word

LCT No longer needed

MGT No longer needed

ASCII Collating Sequence: ! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~

256 E.2 fbForth 1.0 Words not in fbForth 2.0

PUT-FLAG No longer a high-level Forth word

ROA No longer needed because the GPL/XML floating point routines that
modified the rollout area have been replaced.

ROA> No longer needed because the GPL/XML floating point routines that
modified the rollout area have been replaced.

S->FAC No longer a high-level Forth word

SETFL No longer a high-level Forth word

STR No longer a high-level Forth word

STR. No longer a high-level Forth word

TLC No longer needed

VAL No longer a high-level Forth word

ASCII Collating Sequence: ! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~

Appendix E Differences: fbForth 2.0, fbForth 1.0 and TI Forth 257

 E.3 New and Modified Words in fbForth 2.0

This list contains all the new words added since fbForth 1.0 except for the String Stack Library
(see Chapter 14 “The Stack-based String Library”) and the additional words discussed in
§ 11.4 “Useful Additional Stack Words”. New words have a light gray background and are
indented. All of the words in this list are part of the resident dictionary. The words that are not
highlighted have been modified by virtue of the fact that they are now part of the resident
dictionary or their definitions and/or descriptions have changed. Detailed descriptions of words
listed here may be found in Appendix D “The fbForth 2.0 Glossary”.

#MOTION

(ABORT)

*/

*/MOD

 .BASE Display current radix in decimal.

/

/MOD

 0> Leaves true flag if number on stack is less than 0.

;CODE Now, also terminates CODE: .

 >DEG Converts number on stack from radians to degrees.

>F

 >MAP Map SAMS memory.

 >RAD Converts number on stack from degrees to radians.

?FLERR

 ALIGN Insures that HERE is on an even address boundary.

APPND

 ASCII Pushes to the stack the ASCII value of the next character in the input stream.

ATN

 BANK@ Returns the contents of the cell in the bank and address on the stack.

 BANKC@ Returns the contents of the byte in the bank and address on the stack.

BEEP

BOOT

BSAVE

CASE

ASCII Collating Sequence: ! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~

258 E.3 New and Modified Words in fbForth 2.0

 CEIL Returns the floating point (FP) integer closest to but > the number on the stack.

 CF? Returns a flag indicating whether a nanoPEB or CF7+ is attached.

 CFMOUNT Mounts a CF volume in virtual DSK1, DSK2 or DSK3.

 CFVOLS Returns volumes mounted in virtual DSK1, DSK2 and DSK3.

CHAR

CHARPAT

CLSE

 CODE: Defining word for new words with machine-code definitions.

COINC

COINCALL

COINCXY

COLD

COLOR

COLTAB Can only change this constant via user variable number 22h.

COS

 DATA[Begin compiling numbers, tracking the starting address and number count.

 DATA[] Runtime routine compiled by DATA[.

 DCHAR Copies an array of numbers to a character’s location in the PDT.

 DCT A constant that is the address of the Default Colors Table.

 DEFBF Gets address of the default blocks filename.

 DEG/RAD FP constant for degrees/radian

DELALL Use this word instead of SSDT to initialize sprites.

DELSPR

DLT

 DOES>CODE: Starts machine-code body of a defining word cccc created with “ : cccc
<BUILDS … ”.

DOT

DRAW

DSPLY

DTOG

ED@

EDIT

ASCII Collating Sequence: ! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~

Appendix E Differences: fbForth 2.0, fbForth 1.0 and TI Forth 259

 ELSEOF Catchall default OF for CASE .

ENDCASE

ERROR

 EULER_E FP constant for e.

EXP

 EXP10 Returns 10 raised to the power of the FP number on the stack.

F!

F*

F+

F-

F->S

F-D"

F.

F/

FO<

FO=

F<

F=

F>

 F>R Transfers the FP number on the stack to the return stack.

F@

 FABS Returns absolute value of FP number on stack.

 FCONSTANT Defines an FP constant.

FDROP

FDUP

 FFMT. Formats and displays/prints an FP number on the stack.

FILE

FLERR

 FLOOR Returns the floating point (FP) integer closest to but < the number on the stack.

 FM/MOD M/ with floored integer division.

 FMINUS Negates the FP number on the stack.

 FNT Loads the current font (default in cartridge ROM or user-specified).

ASCII Collating Sequence: ! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~

260 E.3 New and Modified Words in fbForth 2.0

 FONTED Starts the new Font Editor.

FOVER

 FP1 FP constant for 1.

 FP10 FP constant for 10.

 FPB Pushes VRAM address of user screen font file PAB to stack.

 FRAC Returns fractional part of FP number on the stack.

 FROT Rotates the third FP number on the stack to the top of the stack.

FSWAP

 FVARIABLE Defines an FP variable.

FXD

GCHAR

GRAPHICS

GRAPHICS2

HCHAR

HONK

INPT

INT

INTRNL

ISR

JCRU

JKBD

JMODE

JOYST

LD

LINE

 LN10INV FP constant for 1/ln(10)

LOG

 LOG10 Returns the decimal logarithm of the FP number on the stack.

M/ Now, does either symmetric (default) or floored integer division, depending on
S|F .

MAGNIFY

MCHAR

ASCII Collating Sequence: ! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~

Appendix E Differences: fbForth 2.0, fbForth 1.0 and TI Forth 261

MINIT

MOTION

MULTI

 N>S Converts a number from the input stream and pushes it to the stack.

OPN

OUTPT

PAB-ADDR

PAB-BUF

PAB-VBUF

PABS

 PAGE Clears display screen and puts cursor at (0,0).

 PANEL Sets up a scrollable text panel (window).

PDT Can only change this constant via user variable number 28h.

PI

 PLAY Plays a sound list.

 PLAYING? Checks whether fbForth 2.0 sound list #1 or #2 is active.

 R>F Transfers the FP number on the return stack to the stack.

 RAD/DEG FP constant for radians/degree.

RD

REC-LEN

REC-NO

RLTV

 RP@ Returns address of top of return stack.

RSTR

 S" Accepts a "-terminated string from the input stream, storing it as a packed
(counted) string.

S->F

 S0&TIB! Moves TIB (same as stack base) for SAMS use.

 SAMS! Initializes SAMS.

 SAMS? Leaves a copy of the SAMS flag.

SATR Can only change this constant via user variable number 24h.

 SAY Speaks a counted list of existing speech-synthesizer words .

ASCII Collating Sequence: ! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~

262 E.3 New and Modified Words in fbForth 2.0

SCREEN

 SCRFNT User variable containing a flag indicating whether to load the default font (zero
flag) or a user-defined font (nonzero flag).

 SCROLL Scrolls a display screen panel one row or column in a specified direction.

SET-PAB

SIN

 SM/REM M/ with symmetric integer division (T-division).

SMTN Can only change this constant via user variable number 26h.

 SOUND Starts a sound on a given channel with a given pitch and volume.

SPCHAR

 SPDCHAR Same as DCHAR but based on SPDTAB.

SPDTAB Can only change this constant via user variable number 42h.

SPLIT

SPLIT2

SPRCOL

SPRDIST

SPRDISTXY

SPRGET

SPRITE

SPRPAT

SPRPUT

SQNTL

SQR

SSDT This word is now optional. Use DELALL to initialize sprites.

STAT

 STREAM Speaks a counted block of raw speech, given its RAM address.

SV

 S|F “S or F”: Signals M/ to perform Symmetric integer division (T-division) (= 0)
or Floored integer division (F-division) (≠ 0)

 TALKING? Checks whether speech synthesizer is busy.

TAN

TEXT

ASCII Collating Sequence: ! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~

Appendix E Differences: fbForth 2.0, fbForth 1.0 and TI Forth 263

TEXT80

 TOKEN Accepts a string, terminated by a given code, from the input stream, storing it as
a packed (counted) string.

 TRUNC Returns integer part of FP number on the stack.

 USEFFL Sets system to use a user-specified font file.

UNDRAW

UPDT

VCHAR

VDPMDE

VLIST

 VMODE Sets the VDP mode to the mode of the number on the stack (0 – 6)

VRBL

WARNING

WHERE

WRT

 WRAP User variable containing wrapping flag for SCROLL .

 [DCHAR] Helper routine for DCHAR and SPDCHAR .

 \ Line comment.

]DATA Terminates a block of numbers begun with DATA[.

^

ASCII Collating Sequence: ! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~

264 Appendix F User Variables in fbForth 2.0

Appendix F User Variables in fbForth 2.0
The purpose of this appendix is to detail the User Variables in fbForth 2.0 to assist in their use
and to provide the necessary information to change or add to this list as necessary. A more
comprehensive description of each of these variables is provided in Appendix D . The table
follows these comments in two layouts. The first is in address offset order and the second is in
alphabetical order by variable name.

The user may use even numbers 6Eh through 7Eh to create his/her own user variables. See the
definition of USER in Appendix D .

As of fbForth 2.0:8, there is one new word (WRAP) added to this table and one word (FLD) no
longer part of this table. S|F was added in fbForth 2.0:9.

 F.1 fbForth 2.0 User Variables (Address Offset Order)

Name Offset Initial Value Description

UCONS$ 06h 366Ch Base of User Var initial value table
S0 08h FFA0h Base of Stack
R0 0Ah 3FFEh Base of Return Stack
U0 0Ch 36B6h Base of User Variables
TIB 0Eh FFA0h Terminal Input Buffer address
WIDTH 10h 31 Name length in dictionary
DP 12h A000h Dictionary Pointer
SYS$ 14h 30DEh Address of System Support
CURPOS 16h 0 Cursor location in VDP RAM
INTLNK 18h 3020h Pointer to Interrupt Service Linkage
WARNING 1Ah 1 Message Control
C/L$ 1Ch 64 Characters per Line
FIRST$ 1Eh 2010h Beginning of Disk Buffers
LIMIT$ 20h 3020h End of Disk Buffers
COLTAB 22h 380h Color Table address in VRAM. COLTAB gets addr.
SATR 24h 300h Sprite Attribute Table address in VRAM. SATR gets addr.
SMTN 26h 780h Sprite Motion Table address in VRAM. SMTN gets addr.
PDT 28h 800h Pattern Descriptor Table addr in VRAM. PDT gets addr.
FPB 2Ah 80h User font file PAB offset from FRB. FPB gets addr.
DISK_BUF 2Ch 1000h VDP location of 128B Forth Record Buffer (FRB)
PABS 2Eh 460h VDP location for PABs
SCRN_WIDTH 30h 40 Display Screen Width in Characters
SCRN_START 32h 0 Display Screen Image Start in VDP
SCRN_END 34h 960 Display Screen Image End in VDP
ISR 36h 0 Interrupt Service Pointer
ALTIN 38h 0 Alternate Input Pointer
ALTOUT 3Ah 0 Alternate Output Pointer
VDPMDE 3Ch 1 VDP Mode
BPB 3Eh C6h Blocks PABs offset from FRB. BPB gets address.
BPOFF 40h 0 Current Blocks file offset from BPB. (0 or 70h)
SPDTAB 42h 800h Sprite Descriptor Table addr in VRAM. SPDTAB gets addr.

Appendix F User Variables in fbForth 2.0 265

Name Offset Initial Value Description
SCRFNT 44h -1 Flag for default/user font (≠ 0) or console font (= 0)
JMODE 46h 0 Flag for whether JOYST executes JKBD (=0) or JCRU (≠0)
WRAP 48h 0 Flag for no wrap (= 0) or wrap (≠ 0); used by SCROLL
S|F 4Ah 0 Flag for Symmetric (= 0) or Floored Integer Division (≠ 0)
FENCE 4Ch Dictionary Fence
BLK 4Eh Block being interpreted
IN 50h Byte offset in text buffer
OUT 52h Incremented by EMIT
SCR 54h Last Forth Block (Screen) referenced
CONTEXT 56h Pointer to Context Vocabulary
CURRENT 58h Pointer to Current Vocabulary
STATE 5Ah Compilation State
BASE 5Ch Number Base for Conversions
DPL 5Eh Decimal Point Location
CSP 60h Stack Pointer for error checking
R# 62h Editing Cursor location
HLD 64h Holds address during numeric conversion
USE 66h Next Block Buffer to Use
PREV 68h Most recently accessed disk buffer
ECOUNT 6Ah Error control
VOC-LINK 6Ch Vocabulary linkage
[user to define] 6Eh —available to user—
[user to define] 70h —available to user—
[user to define] 72h —available to user—
[user to define] 74h —available to user—
[user to define] 76h —available to user—
[user to define] 78h —available to user—
[user to define] 7Ah —available to user—
[user to define] 7Ch —available to user—
[user to define] 7Eh —available to user—

266 F.2 fbForth 2.0 User Variables (Variable Name Order)

 F.2 fbForth 2.0 User Variables (Variable Name Order)

Name Offset Initial Value Description

ALTIN 38h 0 Alternate Input Pointer
ALTOUT 3Ah 0 Alternate Output Pointer
BASE 5Ch Number Base for Conversions
BLK 4Eh Block being interpreted
BPB 3Eh C6h Blocks PABs offset from FRB. BPB gets address.
BPOFF 40h 0 Current Blocks file offset from BPB. (0 or 70h)
C/L$ 1Ch 64 Characters per Line
COLTAB 22h 380h Color Table address in VRAM. COLTAB gets addr.
CONTEXT 56h Pointer to Context Vocabulary
CSP 60h Stack Pointer for error checking
CURPOS 16h 0 Cursor location in VDP RAM
CURRENT 58h Pointer to Current Vocabulary
DISK_BUF 2Ch 1000h VDP location of 128B Forth Record Buffer (FRB)
DP 12h A000h Dictionary Pointer
DPL 5Eh Decimal Point Location
ECOUNT 6Ah Error control
FENCE 4Ch Dictionary Fence
FIRST$ 1Eh 2010h Beginning of Disk Buffers
FPB 2Ah 80h User font file PAB offset from FRB. FPB gets addr.
HLD 64h Holds address during numeric conversion
IN 50h Byte offset in text buffer
INTLNK 18h 3020h Pointer to Interrupt Service Linkage
ISR 36h 0 Interrupt Service Pointer
JMODE 46h 0 Flag for whether JOYST executes JKBD (=0) or JCRU (≠0)
LIMIT$ 20h 3020h End of Disk Buffers
OUT 52h Incremented by EMIT
PABS 2Eh 460h VDP location for PABs
PDT 28h 800h Pattern Descriptor Table addr in VRAM. PDT gets addr.
PREV 68h Most recently accessed disk buffer
R# 62h Editing Cursor location
R0 0Ah 3FFEh Base of Return Stack
S0 08h FFA0h Base of Stack
SATR 24h 300h Sprite Attribute Table address in VRAM. SATR gets addr.
SCR 54h Last Forth Block (Screen) referenced
SCRFNT 44h -1 Flag for default/user font (≠ 0) or console font (= 0)
SCRN_END 34h 960 Display Screen Image End in VDP
SCRN_START 32h 0 Display Screen Image Start in VDP
SCRN_WIDTH 30h 40 Display Screen Width in Characters
SMTN 26h 780h Sprite Motion Table address in VRAM. SMTN gets addr.
SPDTAB 42h 800h Sprite Descriptor Table addr in VRAM. SPDTAB gets addr.
STATE 5Ah Compilation State
SYS$ 14h 30DEh Address of System Support
S|F 4Ah 0 Flag for Symmetric (= 0) or Floored Integer Division (≠ 0)
TIB 0Eh FFA0h Terminal Input Buffer address

Appendix F User Variables in fbForth 2.0 267

Name Offset Initial Value Description

U0 0Ch 36B6h Base of User Variables
UCONS$ 06h 366Ch Base of User Var initial value table
USE 66h Next Block Buffer to Use
VDPMDE 3Ch 1 VDP Mode
VOC-LINK 6Ch Vocabulary linkage
WARNING 1Ah 1 Message Control
WIDTH 10h 31 Name length in dictionary
WRAP 48h 0 Flag for no wrap (= 0) or wrap (≠ 0); used by SCROLL
[user to define] 6Eh —available to user—
[user to define] 70h —available to user—
[user to define] 72h —available to user—
[user to define] 74h —available to user—
[user to define] 76h —available to user—
[user to define] 78h —available to user—
[user to define] 7Ah —available to user—
[user to define] 7Ch —available to user—
[user to define] 7Eh —available to user—

268 Appendix G fbForth 2.0 Load Option Directory

Appendix G fbForth 2.0 Load Option
Directory

The load options are displayed by typing MENU . The load options allow you to load only the
Forth extensions you wish to use.

You will notice that some of the load options first load other Forth blocks upon which they
depend. For example, option, 64-Column Editor, depends on the words loaded by block 13, which
displays “loading compact list words” as block 13 starts to load. If, by chance, the prerequisite
words were already in the dictionary at the time you type 6 LOAD , they would not be loaded
again. This is called a conditional load. Note: As of this writing, the 64-column editor and the
“Stack-Based String Library” for fbForth V2.0 ” are the only options that do conditional loads of
other blocks.

Though most load options load many more word definitions than are indicated below at “Words
loaded:”, only those of interest to the user and described in the glossary are listed.

 G.1 Option: 64-Column Editor

Starting screen: 6

Words loaded: EDIT ED@ WHERE
CLIST CLINE

 G.2 Option: CPYBLK -- Block Copying Utility

Starting screen: 4

Words loaded: SCMP CPYBLK

 G.3 Option: Memory Dump Utility

Starting screen: 16

Words loaded: DUMP

 G.4 Option: TRACE -- Colon Definition Tracing

Starting screen: 18

Words loaded: TRACE UNTRACE TRON
TROFF : (alternate)

Appendix G fbForth 2.0 Load Option Directory 269

 G.5 Option: Printing Routines

Starting screen: 19

Words loaded: SWCH UNSWCH ?ASCII
TRIAD TRIADS INDEX

 G.6 Option: TMS9900 Assembler

Starting screen: 21

Words loaded: Entire Assembler vocabulary. See Chapter 9 of the manual.

 G.7 Option: CRU Words

Starting screen: 5

Words loaded: SBO SBZ TB
LDCR STCR

 G.8 Option: More Useful Stack Words etc.

Starting screen: 41

Words loaded: 2DUP 2DROP NIP TUCK CELLS -ROT
PICK ROLL WITHIN <> $. EXIT

 G.9 Option: Stack-based String Library

Starting Screen: 42

Words loaded: Entire String Stack Library. See Chapter 14 of the manual.

 G.10 Option: DIR -- Disk Catalog Utility

Starting screen: 36

Words loaded: DIR

 G.11 Option: CAT -- Disk Catalog Utility

Starting screen: 58

Words loaded: CAT

270 G.12 Option: TI Forth Block Utilities

 G.12 Option: TI Forth Block Utilities

Starting screen: 61

Words loaded: TIFBLK TIFIDX TIF2FBF TIFVU

 G.13 Option: ASM>CODE -- Code Output Utility

Starting screen: 39

Words loaded: ASM>CODE

 G.14 Option: Compact Flash Utilities

Starting screen: 69

Words loaded: CF? CFMOUNT CFVOLS

Appendix H Assembly Source for CODEd Words 271

Appendix H Assembly Source for CODEd
Words

Several words in FBLOCKS have been written in TMS9900 code to increase their execution
speeds and/or decrease their size. They include the words:

SBO — a CRU instruction

SBZ — a CRU instruction

TB — a CRU instruction

LDCR — a CRU instruction

STCR — a CRU instruction

DDOT — used by the dot plotting routine

SMASH — used by CLINE and CLIST

TCHAR — definitions for the tiny characters

JCRU —joystick access via the CRU

These words have been coded in hexadecimal in FBLOCKS, thus they do not require that the
fbForth 2.0 Assembler be in memory before they can be loaded. Their Assembly source code
(written in fbForth 2.0 TMS9900 Assembler) is listed on the following pages.

Block 45 needs a little clarification:

1. It should be noted that the definition of TCHAR on line 1 is not actually Assembly source
code. It is high-level Forth source code. If you wanted to change the character
definitions and copy your new table to block 15 of FBLOCKS, you would need to first
load the new character definitions. Let's say you have blocks 45 ‒ 47 in a blocks file
named MYBLOCKS on DSK1 with your new character definitions for TCHAR . This
would require loading block 45 of MYBLOCKS to get the definition of TCHAR into
memory and then copying the contents of TCHAR to lines 3 – 9 of block 15 of FBLOCKS.
The following code will do the trick:

USEBFL DSK1.MYBLOCKS <== Make MYBLOCKS current

45 LOAD <== Load TCHAR

USEBFL DSK1.FBLOCKS <== Make FBLOCKS current

TCHAR 15 BLOCK 192 + 194 MOVE <== Copy TCHAR to block 15, line 3

FLUSH <== Flush block to FBLOCKS

FORGET TCHAR <== Recover space in dictionary used by
TCHAR

272 Appendix H Assembly Source for CODEd Words

2. The comment, (^0) (Shift+0), on line 5 is a substitute for ()) , a syntax error.

For clarity of the code presentation, a few of the blocks below show the code of some of the
numbered lines spanning multiple lines on the page:

BLOCK #40
 0 (Source for CRU words...R12 is CRU register) BASE->R HEX
 1 ASM: SBO (addr ---)
 2 *SP+ R12 MOV,
 R12 R12 A,
 3 0 SBO,
 ;ASM

 4 ASM: SBZ (addr ---)
 5 *SP+ R12 MOV,
 R12 R12 A,
 6 0 SBZ,
 ;ASM

 7 ASM: TB (addr --- flag)
 8 *SP R12 MOV,
 R12 R12 A,
 9 *SP CLR,
 0 TB,
 10 EQ IF,
 11 *SP INC,
 12 THEN,
 13 ;ASM R->BASE -->
 14
 15

BLOCK #41
 0 (Source for CRU words) BASE->R HEX
 1 ASM: LDCR (n1 n2 addr ---)
 2 *SP+ R12 MOV,
 R12 R12 A,
 *SP+ R1 MOV,
 3 *SP+ R0 MOV,
 R1 000F ANDI,
 4 NE IF,
 5 R1 0008 CI,
 6 LTE IF,
 7 R0 SWPB,
 8 THEN,
 9 THEN,
 10 R1 06 SLA,
 R1 3000 ORI,
 R1 X,
 11 ;ASM R->BASE -->
 12
 13
 14
 15

Appendix H Assembly Source for CODEd Words 273

BLOCK #42
 0 (Source for CRU words) BASE->R HEX
 1 ASM: STCR (n1 addr --- n2)
 2 *SP+ R12 MOV,
 R12 R12 A,
 *SP R1 MOV,
 3 R0 CLR,
 R1 000F ANDI,
 R1 R2 MOV,
 4 R1 06 SLA,
 R1 3400 ORI,
 R1 X,
 5 R2 R2 MOV,
 6 NE IF,
 7 R02 0008 CI,
 8 LTE IF,
 9 R0 SWPB,
 10 THEN,
 11 THEN,
 12 R0 *SP MOV,
 13 ;ASM
 14
 15 R->BASE

BLOCK #43
 0 (Source for DDOT) BASE->R HEX
 1 8040 VARIABLE DTAB 2010 , 0804 , 0201 , 7FBF , DFEF ,
 2 F7FB , FDFE , 8040 , 2010 , 0804 , 0201 ,
 3 ASM: DDOT (dotcol dotrow --- b vaddr)
 4 *SP+ R1 MOV,
 *SP R3 MOV,
 R1 R2 MOV,
 5 R3 R4 MOV,
 R1 0007 ANDI,
 R3 0007 ANDI,
 6 R2 00F8 ANDI,
 R4 00F8 ANDI,
 R2 05 SLA,
 7 R2 R1 A,
 R4 R1 A,
 R1 2000 AI,
 8 R4 CLR,
 DTAB @(R3) R4 MOVB,
 9 R4 SWPB,
 R4 *SP MOV,
 SP DECT,
 10 R1 *SP MOV,
 11 ;ASM
 12
 13
 14
 15 R->BASE

274 Appendix H Assembly Source for CODEd Words

BLOCK #44
 0 (Source for SMASH) BASE->R HEX
 1 0 VARIABLE TCHAR 17E ALLOT 43 BLOCK TCHAR 180 CMOVE
 2 TCHAR 7C - CONSTANT TC 0 VARIABLE LB FE ALLOT
 3 ASM: SMASH (addr #char line# --- lb vaddr cnt)
 4 *SP+ R1 MOV,
 *SP+ R2 MOV,
 *SP R3 MOV,
 R4 LB LI,
 R4 *SP MOV,
 5 SP DECT,
 R1 SWPB,
 R1 2000 AI,
 R1 *SP MOV,
 R2 R1 MOV,
 R1 INC,
 6 R1 FFFE ANDI,
 SP DECT,
 R1 2 SLA,
 R1 *SP MOV,
 R3 R2 A,
 7 BEGIN,
 R2 R3 C,
 8 GT WHILE,
 R5 CLR,
 R6 CLR,
 *R3+ R5 MOVB,
 9 *R3+ R6 MOVB,
 R5 6 SRL,
 R6 6 SRL,
 10 BEGIN,
 TC @(R5) R0 MOV,
 TC @(R6) R1 MOV,
 R1 4 SRC,
 R12 4 LI,
 11 BEGIN,
 R0 R11 MOV,
 R11 F000 ANDI,
 R1 R7 MOV,
 R7 F00 ANDI,
 12 R11 R7 SOC,
 R7 *R4+ MOVB,
 R0 C SRC,
 R1 C SRC,
 R12 DEC,
 13 EQ UNTIL,
 R5 INCT,
 R6 INCT,
 R5 R12 MOV,
 R12 2 ANDI,
 14 EQ UNTIL,
 15 REPEAT,
 ;ASM R->BASE

Appendix H Assembly Source for CODEd Words 275

BLOCK #45
 0 (definitions of tiny chars with true lowercase) BASE->R HEX
 1 0EEE VARIABLE TCHAR DATA[EEEE
 2 0000 0000 () 0444 4404 (!) 0AA0 0000 (") 08AE AEA2 (#)
 3 04EC 46E4 ($) 0A24 448A (%) 06AC 4A86 (&) 0480 0000 (')
 4 0248 8842 (() 0842 2248 (^0) 04EE 4000 (*) 0044 E440 (+)
 5 0000 0048 (,) 0000 E000 (-) 0000 0004 (.) 0224 4488 (/)
 6 04AA EAA4 (0) 04C4 4444 (1) 04A2 488E (2) 0C22 C22C (3)
 7 02AA AE22 (4) 0E8C 222C (5) 0688 CAA4 (6) 0E22 4488 (7)
 8 04AA 4AA4 (8) 04AA 622C (9) 0004 0040 (:) 0004 0048 (;)
 9 0024 8420 (<) 000E 0E00 (=) 0084 2480 (>) 04A2 4404 (?)
 10 04AE AE86 (@) 04AA EAAA (A) 0CAA CAAC (B) 0688 8886 (C)
 11 0CAA AAAC (D) 0E88 C88E (E) 0E88 C888 (F) 04A8 8AA6 (G)
 12 0AAA EAAA (H) 0E44 444E (I) 0222 22A4 (J) 0AAC CAAA (K)
 13 0888 888E (L) 0AEE AAAA (M) 0AAE EEAA (N) 0EAA AAAE (O)
 14 0CAA C888 (P) 0EAA AAEC (Q) 0CAA CAAA (R) 0688 422C (S)
 15 -->

BLOCK #46
 0 (definitions of tiny chars with true lowercase continued)
 1 0E44 4444 (T) 0AAA AAAE (U) 0AAA AA44 (V) 0AAA AEEA (W)
 2 0AA4 44AA (X) 0AAA E444 (Y) 0E24 488E (Z) 0644 4446 ([)
 3 0884 4422 (\) 0C44 444C (]) 044A A000 ($) 0000 000F (_)
 4 0420 0000 (`) 000E 2EAE (a) 088C AAAC (b) 0006 8886 (c)
 5 0226 AAA6 (d) 0004 AE86 (e) 0688 E888 (f) 0006 A62C (g)
 6 088C AAAA (h) 0404 4442 (i) 0202 22A4 (j) 088A ACAA (k)
 7 0444 4444 (l) 000A EEAA (m) 0008 EAAA (n) 0004 AAA4 (o)
 8 000C AC88 (p) 0006 A622 (q) 0008 E888 (r) 0006 842C (s)
 9 044E 4442 (t) 000A AAA6 (u) 000A AAA4 (v) 000A AEEA (w)
 10 000A A4AA (x) 000A A62C (y) 000E 248E (z) 0644 8446 ({)
 11 0444 0444 (|) 0C44 244C (}) 02E8 0000 (~) 0EEE EEEE (DEL)
 12]DATA DROP DROP R->BASE ;S
 13
 14
 15

BLOCK #48
 0 (Source for JCRU used by JOYST for CRU access to joysticks)
 1 BASE->R HEX
 2 ASM: JCRU (joystick# --- value)
 3 *SP R1 MOV, (get unit number)
 4 R1 5 AI, (use keyboard select 6 for #1, 7 for #2)
 5 R1 SWPB,
 6 R12 24 LI,
 7 R1 3 LDCR,
 8 R12 6 LI,
 9 R1 5 STCR,
 10 R1 SWPB,
 11 R1 INV,
 12 R1 001F ANDI,
 13 R1 *SP MOV,
 14 83D6 @() CLR, (defeat auto screen blanking without KSCAN)
 15 ;ASM R->BASE

276 Appendix I Error Messages

Appendix I Error Messages

Error# Message Probable Causes

1 empty stack Procedure being executed attempts to pop a number off the
parameter stack when there is no number on the parameter
stack. The error may have occurred long before it is
detected because Forth checks for this condition only when
control returns to the outer interpreter.

2 dictionary full The user dictionary space is full. Too many definitions have
been compiled.

4 isn’t unique This message is more a warning than an error. It informs the
user that a word with the same name as the one just
compiled is already in the CURRENT or CONTEXT
vocabulary.

5 FBLOCKS not current This message is displayed when fbForth 2.0 needs to read
from the system blocks file, FBLOCKS, and the user has
made another blocks file current with USEBFL . This is
likely the result of executing MENU without FBLOCKS
current.

6 disk error This has several possible causes: No disk in disk drive, disk
not initialized, disk drive or controller not connected
properly, disk drive or controller not plugged in. The
diskette may be damaged with some sector having a hard
error.

7 full stack The procedure being executed is leaving extra unwanted
numbers on the parameter stack resulting in a stack
overflow.

8 block # out of range A block # has been requested from the current blocks file
that is less than 1 or greater than the number of blocks in the
file.

9 file I/O error Any file I/O operation which results in an error will return
this message. The high-order 3 bits of the flag/status byte
(PAB + 1) contain the error code, which can be obtained
with HEX PAB-ADDR @ 1+ VSBR 0E0 AND 5 SRA . An
error code of 0 indicates no error only if the COND bit (bit
2) of the GPL status byte located at 837Ch is not set.

code meaning

00 Bad device name

01 Device is write protected

02 Bad open attribute

Appendix I Error Messages 277

Error# Message Probable Causes

03 Illegal operation

04 Out of table or buffer space on the device

05 Attempt to read past EOF

06 Device error

07 File error. Attempt to open nonexistent file, etc.

10 floating point error This error message will be issued only when ?FLERR is
executed and a true flag is returned. FLERR may be
executed to fetch the floating point status byte.

code meaning

01 Overflow

02 Syntax

03 Integer overflow on conversion

04 Square root of negative

05 Negative number to non-integer power

06 Logarithm of a non-positive number

07 Invalid argument in a trigonometric function

17 compilation only Occurs when conditional constructs such as DO … LOOP or
IF … THEN are executed outside a colon definition.

18 execution only Occurs when you attempt to compile a compiling word into
a colon definition.

19 conditionals not paired A DO has been left without a LOOP , an IF has no
corresponding ENDIF or THEN , etc.

20 definition not finished A ; was encountered and the parameter stack was not at the
same height as when the preceding : was encountered. For
example, an incomplete conditional construct such as : xx
IF ; , will trigger this error message.

21 in protected dictionary An attempt was made to FORGET a word with an address
lower than or equal to that of TASK (last word in resident
dictionary) or the contents of FENCE if that is higher.

22 use only when loading This usually means an attempt was made to use --> on the
command line.

25 bad jump token Improper use of jump tokens or conditionals in the
fbForth 2.0 TMS9900 Assembler.

278 Appendix J Contents of FBLOCKS

Appendix J Contents of FBLOCKS
The contents of the fbForth 2.0 system blocks file, FBLOCKS, that follow are derived from TI
Forth but are in different blocks. Much of this is due to the fact that the blocks are in a file rather
than referenced as sectors on a disk. The blocks are also not necessarily in the same order as in
TI Forth. However, the TI Forth block (screen) number is indicated as “(old TIF #...)” where
applicable. There are also many changes from TI Forth. Many words have been moved to the
resident dictionary and some TI Forth words have been removed. There are new words in
fbForth 2.0, as well. (cf. Appendix E “Differences: fbForth 2.0, fbForth 1.0 and TI Forth”)

Note that blocks are numbered from 1 in fbForth 2.0 rather than 0 as in TI Forth. There are also
14 blank blocks (blocks 14, 57, 68, 70 – 80), which you can use as you wish.

Note, also, that the following file is dated 19APR2017:

BLOCK #1 (old TIF #3)
 0 (fbForth WELCOME SCREEN---LES 19APR2017)
 1 BASE->R HEX
 2 : MENU 1 BLOCK 2+ @ 6662 - 5 ?ERROR 2 LOAD ;
 3 ." FBLOCKS mod: 19APR2017"
 4 CR CR ." Type MENU for load options." CR CR R->BASE ;S
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15

BLOCK #2
 0 PAGE ." Load Options (19APR2017) fbForth 2.0:"
 1 (Type build #) BASE->R HEX 6033 C@ EMIT R->BASE CR CR
 2 ." Description Load Block" CR
 3 ." ---------------------------------------" CR
 4 ." CPYBLK -- Block Copying Utility.......4" CR
 5 ." CRU Words.............................5" CR
 6 ." 64-Column Editor......................6" CR
 7 ." Memory Dump Utility..................16" CR
 8 ." TRACE -- Colon Definition Tracing....18" CR
 9 ." Printing Routines....................19" CR
 10 ." TMS9900 Assembler....................21" CR
 11 ." More Useful Stack Words etc..........41" CR
 12 ." Stack-based String Library...........42" CR
 13 ." DIR -- Disk Catalog Utility..........36" CR
 14 ." CAT -- Disk Catalog Utility..........58" CR
 15 ." TI Forth Block Utilities.............61" CR -->

Appendix J Contents of FBLOCKS 279

BLOCK #3
 0 ." ASM>CODE -- Code Output Utility......39" CR
 1 ." Compact Flash Utilities..............69" CR
 2 ." TMS9900 Assembler (v2.0:9 binary)....27" CR
 3 ." 64-Column Editor (v2.0:9 binary).....32" CR
 4 ." String Library (v2.0:9 binary).......52" CR CR
 5 ." Type <block> LOAD to load. " ;S
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15

BLOCK #4 (old TIF #39)
 0 (Block Copy 17JUN2016 LES) CR CR ." CPYBLK copies a range
 1 of blocks to the same or another file, e.g.," CR CR ." CPYB
 2 LK 5 8 DSK1.F1 9 DSK2.F2" CR CR ." will copy blocks 5-8 from DS
 3 K1.F1 to DSK2.F2 starting at block 9." CR CR 0 CLOAD CPYBLK
 4 BASE->R DECIMAL 0 VARIABLE SFL 0 VARIABLE DFL 0 CONSTANT XD
 5 : SCMP OVER C@ OVER C@ OVER OVER - SGN >R MIN 1+ 0 SWAP 1 DO
 6 DROP OVER I + C@ OVER I + C@ - SGN DUP IF LEAVE THEN LOOP R>
 7 OVER 0= IF OR ELSE DROP THEN SWAP DROP SWAP DROP ;
 8 : GBFL BL WORD HERE DUP C@ 1+ =CELLS
 9 ALLOT SWAP ! ; : CPYBLK EMPTY-BUFFERS 1 ' XD ! HERE BPB BPOFF
 10 @ + 9 + DUP VSBR 1+ HERE SWAP DUP =CELLS ALLOT VMBR N>S N>S
 11 OVER OVER > IF SWAP THEN OVER - 1+ >R SFL GBFL N>S DFL GBFL SFL
 12 @ DFL @ SCMP 0= IF OVER OVER - DUP 0< SWAP R MINUS > + 2 = IF
 13 SWAP R + 1- SWAP R + 1- -1 ' XD ! THEN THEN CR R> 0 DO OVER DUP
 14 . OVER SFL @ (UB) SWAP BLOCK 2- ! DFL @ (UB) UPDATE FLUSH XD +
 15 SWAP XD + SWAP LOOP DROP DROP DUP (UB) DP ! ; R->BASE

BLOCK #5 (old TIF #88)
 0 (CRU WORDS 12OCT82 LAO) 0 CLOAD STCR
 1 CR ." loading CRU words"
 2 BASE->R HEX
 3 CODE: SBO C339 A30C 1D00 ;CODE
 4 CODE: SBZ C339 A30C 1E00 ;CODE
 5 CODE: TB C319 A30C 04D9 1F00 1601 0599 ;CODE
 6
 7 CODE: LDCR C339 A30C C079 C039 0241 000F 1304 0281
 8 0008 1501 06C0 0A61 0261 3000 0481 ;CODE
 9
 10 CODE: STCR C339 A30C C059 04C0 0241 000F C081 0A61 0261 3400
 11 0481 C082 1304 0282 0008 1501 06C0 C640 ;CODE
 12
 13 CR ." See Manual for usage." CR R->BASE
 14
 15

280 Appendix J Contents of FBLOCKS

BLOCK #6 (old TIF #22)
 0 (64 COLUMN EDITOR)
 1 0 CLOAD EDITOR2 (ED@)
 2 BASE->R DECIMAL 13 R->BASE CLOAD CLIST
 3 BASE->R HEX CR ." loading 64-column editor"
 4
 5
 6 VOCABULARY EDITOR2 IMMEDIATE EDITOR2 DEFINITIONS
 7 0 VARIABLE CUR
 8 : !CUR 0 MAX 3FF MIN CUR ! ;
 9 : +CUR CUR @ + !CUR ;
 10 : +LIN CUR @ C/L / + C/L * !CUR ; DECIMAL
 11 : LINE. DO I SCR @ (LINE) I CLINE LOOP ;
 12
 13 : PTR CUR @ SCR @ BLOCK + ;
 14 : R/C CUR @ C/L /MOD ; (--- col row) R->BASE -->
 15

BLOCK #7 (old TIF #23)
 0 (64 COLUMN EDITOR) BASE->R HEX ." ."
 1
 2 : CINIT
 3 SATR 2 0 DO DUP >R D000 SP@ R> 2 VMBW DROP 4 + LOOP DROP
 4 0000 0000 0000 0000 5 SPCHAR 0 CUR !
 5 F090 9090 9090 90F0 6 SPCHAR 0 1 F 5 0 SPRITE ; DECIMAL
 6
 7 : PLACE CUR @ 64 /MOD 8 * 1+ SWAP 4 * 1- DUP 0< IF DROP 0 ENDIF
 8 SWAP 0 SPRPUT ;
 9 : UP -64 +CUR PLACE ;
 10 : DOWN 64 +CUR PLACE ;
 11 : LEFT -1 +CUR PLACE ;
 12 : RIGHT 1 +CUR PLACE ;
 13 : CGOTOXY (col row ---) 64 * + !CUR PLACE ;
 14
 15 R->BASE -->

BLOCK #8 (old TIF #24)
 0 (64 COLUMN EDITOR) BASE->R ." ."
 1
 2 DECIMAL
 3
 4 : .CUR CUR @ C/L /MOD CGOTOXY ;
 5 : DELHALF PAD 64 BLANKS PTR PAD C/L R/C DROP - CMOVE ;
 6
 7 : DELLIN R/C SWAP MINUS +CUR PTR PAD C/L CMOVE DUP L/SCR SWAP
 8 DO PTR 1 +LIN PTR SWAP C/L CMOVE LOOP
 9 0 +LIN PTR C/L 32 FILL C/L * !CUR ;
 10 : INSLIN R/C SWAP MINUS +CUR L/SCR +LIN DUP 1+ L/SCR 0 +LIN
 11 DO PTR -1 +LIN PTR SWAP C/L CMOVE -1 +LOOP
 12 PAD PTR C/L CMOVE C/L * !CUR ;
 13 : RELINE R/C SWAP DROP DUP LINE. UPDATE .CUR ;
 14 : +.CUR +CUR .CUR ;
 15 R->BASE -->

Appendix J Contents of FBLOCKS 281

BLOCK #9 (old TIF #25)
 0 (64 COLUMN EDITOR) BASE->R DECIMAL ." ."
 1 : -TAB PTR DUP C@ BL >
 2 IF BEGIN 1- DUP -1 +CUR C@ BL =
 3 UNTIL
 4 ENDIF
 5 BEGIN CUR @ IF 1- DUP -1 +CUR C@ BL > ELSE .CUR 1 ENDIF UNTIL
 6 BEGIN CUR @ IF 1- DUP -1 +CUR C@ BL = DUP IF 1 +.CUR ENDIF
 7 ELSE .CUR 1 ENDIF
 8 UNTIL DROP ;
 9 : TAB PTR DUP C@ BL = 0=
 10 IF BEGIN 1+ DUP 1 +CUR C@ BL =
 11 UNTIL
 12 ENDIF
 13 CUR @ 1023 = IF .CUR 1
 14 ELSE BEGIN 1+ DUP 1 +CUR C@ BL > UNTIL .CUR
 15 ENDIF DROP ; R->BASE -->

BLOCK #10 (old TIF #26)
 0 (64 COLUMN EDITOR) BASE->R ." ."
 1 DECIMAL
 2 : !BLK PTR C! UPDATE ;
 3 : BLNKS PTR R/C DROP C/L SWAP - 32 FILL ;
 4 : HOME 0 0 CGOTOXY ;
 5 : REDRAW SCR @ CLIST UPDATE .CUR ;
 6 : SCRNO CLS 0 0 GOTOXY ." BLOCK #" SCR @ BASE->R DECIMAL U.
 7 R->BASE CR ;
 8 : +SCR SCR @ 1+ DUP SCR ! SCRNO CLIST ;
 9 : -SCR SCR @ 1- 1 MAX DUP SCR ! SCRNO CLIST ;
 10 : DEL PTR DUP 1+ SWAP R/C DROP C/L SWAP - CMOVE 32
 11 PTR R/C DROP - C/L + 1- C! ;
 12 : INS 32 PTR DUP R/C DROP C/L SWAP - + SWAP DO
 13 I C@ LOOP DROP PTR DUP R/C DROP C/L SWAP - + 1- SWAP 1- SWAP
 14 DO I C! -1 +LOOP ; R->BASE -->
 15

BLOCK #11 (old TIF #27)
 0 (64 COLUMN EDITOR 15JUL82 LAO) BASE->R DECIMAL ." ."
 1 0 VARIABLE BLINK 0 VARIABLE OKEY
 2 10 CONSTANT RL 150 CONSTANT RH 0 VARIABLE KC RH VARIABLE RLOG
 3 : RKEY BEGIN ?KEY -DUP 1 BLINK +! BLINK @ DUP 60 < IF 6 0 SPRPAT
 4 ELSE 5 0 SPRPAT ENDIF 120 = IF 0 BLINK ! ENDIF
 5 IF (SOME KEY IS PRESSED) KC @ 1 KC +! 0 BLINK !
 6 IF (WAITING TO REPEAT) RLOG @ KC @ <
 7 IF (LONG ENOUGH) RL RLOG ! 1 KC ! 1 (FORCE EXT)
 8 ELSE OKEY @ OVER =
 9 IF DROP 0 (NEED TO WAIT MORE)
 10 ELSE 1 (FORCE EXIT) DUP KC ! ENDIF
 11 ENDIF
 12 ELSE (NEW KEY) 1 (FORCE LOOP EXIT) ENDIF
 13 ELSE (NO KEY PRESSED) RH RLOG ! 0 KC ! 0
 14 ENDIF
 15 UNTIL DUP OKEY ! ; R->BASE -->

282 Appendix J Contents of FBLOCKS

BLOCK #12 (old TIF #28 & #29)
 0 (64 COLUMN EDITOR) BASE->R HEX ." ."
 1 : EDT VDPMDE @ >R SPLIT (0 1000 040 VFILL) (0F 7 VWTR)
 2 (1000 800 01B VFILL) CINIT !CUR R/C CGOTOXY
 3 DUP DUP SCR ! SCRNO CLIST BEGIN RKEY CASE 08 OF LEFT ENDOF
 4 0C OF -SCR ENDOF 0A OF DOWN ENDOF 03 OF DEL RELINE ENDOF
 5 0B OF UP ENDOF 04 OF INS RELINE ENDOF 09 OF RIGHT ENDOF
 6 07 OF DELLIN REDRAW ENDOF 06 OF INSLIN REDRAW ENDOF
 7 0E OF HOME ENDOF 02 OF +SCR ENDOF 16 OF TAB ENDOF
 8 0D OF 1 +LIN .CUR PLACE ENDOF 1E OF INSLIN BLNKS REDRAW ENDOF
 9 01 OF DELHALF BLNKS RELINE ENDOF 7F OF -TAB ENDOF
 10 0F OF 5 0 SPRPAT R> VMODE CLS SCRNO DROP QUIT ENDOF
 11 DUP 1F > OVER 7F < AND IF DUP !BLK R/C SWAP DROP DUP SCR @
 12 (LINE) ROT CLINE 1 +.CUR ELSE 7 EMIT ENDIF ENDCASE AGAIN ;
 13 FORTH DEFINITIONS : EDIT EDITOR2 0 EDT ;
 14 : WHERE EDITOR2 SWAP 2- EDT ; : ED@ EDITOR2 SCR @ SCRNO EDIT ;
 15 CR CR ." See Manual for usage." CR R->BASE

BLOCK #13 (old TIF #65)
 0 (COMPACT LIST)
 1 0 CLOAD CLIST BASE->R CR ." loading compact list words"
 2 DECIMAL 0 VARIABLE TCHAR 382 ALLOT
 3 15 BLOCK 192 + TCHAR 384 CMOVE HEX
 4 TCHAR 7C - CONSTANT TC 0 VARIABLE BADDR 0 VARIABLE INDX
 5 0 VARIABLE LB FE ALLOT
 6 CODE: SMASH (ADDR #CHAR LINE# --- LB VADDR CNT)
 7 C079 C0B9 C0D9 0204 LB , C644 0649 06C1 0221 2000 C641 C042
 8 0581 0241 FFFE 0649 0A21 C641 A083 80C2 1501 1020 04C5 04C6
 9 D173 D1B3 0965 0966 C025 TC , C066 TC , 0B41 020C 0004 C2C0
 10 024B F000 C1C1 0247 0F00 E1CB DD07 0BC0 0BC1 060C 16F4 05C5
 11 05C6 C305 024C 0002 16E7 10DD ;CODE
 12 DECIMAL
 13 : CLINE LB 256 ERASE SMASH VMBW ;
 14 : CLOOP DO I 64 * OVER + 64 I CLINE LOOP DROP ;
 15 : CLIST BLOCK 16 0 CLOOP ; R->BASE

BLOCK #14
 0
 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15

Appendix J Contents of FBLOCKS 283

BLOCK #15 (old TIF #67)
 0 (Tiny character patterns for TCHAR array---compact list for
 1 64-column editor---388 bytes, lines 3:0-9:0 below)
 2
 3 *
 4 *
 5 * * * * * *
 6 * * * B I N A R Y C H A R A C T E R D A T A * * *
 7 * * * * * *
 8 *
 9 *
 10
 11
 12
 13
 14
 15

BLOCK #16 (old TIF #42)
 0 (DUMP ROUTINES 12JUL82 LCT...25OCT2015 LES mod)
 1 0 CLOAD DUMP BASE->R HEX CR ." loading memory dump utility"
 2 : VM+ VDPMDE @ 0= IF + ELSE DROP THEN ;
 3 : DUMP8 -DUP
 4 IF
 5 BASE->R HEX 0 OUT ! OVER 4 U.R 3A EMIT
 6 OVER OVER 0 DO
 7 DUP @ 0 <# # # # # BL HOLD BL HOLD #> TYPE 2+ 2
 8 +LOOP DROP 1F 18 VM+ OUT @ - SPACES
 9 0 DO
 10 DUP C@ DUP 20 < OVER 7E > OR
 11 IF DROP 2E ENDIF
 12 EMIT 1+
 13 LOOP
 14 CR R->BASE ENDIF ; -->
 15

BLOCK #17 (old TIF #43)
 0 (DUMP ROUTINES 12JUL82 LCT...25OCT2015 LES mod) ." ."
 1 : DUMP CR 00 8 8 VM+ U/ >R SWAP R> -DUP
 2 IF 0
 3 DO 8 8 VM+ DUMP8 PAUSE IF SWAP DROP 0 SWAP LEAVE ENDIF LOOP
 4 ENDIF SWAP DUMP8 DROP ;
 5 (.S and VLIST have been put in resident dictionary)
 6 R->BASE ;S
 7
 8
 9
 10
 11
 12
 13
 14
 15

284 Appendix J Contents of FBLOCKS

BLOCK #18 (old TIF #44)
 0 (TRACE COLON WORDS-FORTH DIMENSIONS III/2 P.58 26OCT82 LCT)
 1 0 CLOAD (TRACE) CR ." loading colon definition tracing "
 2 FORTH DEFINITIONS
 3 0 VARIABLE TRACF (CONTROLS INSERTION OF TRACE ROUTINE)
 4 0 VARIABLE TFLAG (CONTROLS TRACE OUTPUT)
 5 : TRACE 1 TRACF ! ;
 6 : UNTRACE 0 TRACF ! ;
 7 : TRON 1 TFLAG ! ;
 8 : TROFF 0 TFLAG ! ;
 9 : (TRACE) TFLAG @ (GIVE TRACE OUTPUT?)
 10 IF CR R 2- NFA ID. (BACK TO PFA NFA FOR NAME)
 11 .S ENDIF ; (PRINT STACK CONTENTS)
 12 : : (REDEFINED TO INSERT TRACE WORD AFTER COLON)
 13 ?EXEC !CSP CURRENT @ CONTEXT ! CREATE [' : CFA @] LITERAL
 14 HERE 2- ! TRACF @ IF ' (TRACE) CFA DUP @ HERE 2- ! , ENDIF]
 15 ; IMMEDIATE

BLOCK #19 (old TIF #72)
 0 (ALTERNATE I/O SUPPORT FOR RS232 PNTR 12JUL82 LCT...mod LES)
 1 0 CLOAD INDEX CR ." loading printing routines"
 2 0 0 0 FILE >RS232 BASE->R HEX
 3 : SWCH >RS232 PABS @ 10 + DUP PAB-ADDR ! 1- PAB-VBUF !
 4 SET-PAB OUTPT F-D" RS232.BA=9600" OPN 3
 5 PAB-ADDR @ VSBW 1 PAB-ADDR @ 5 + VSBW PAB-ADDR @ ALTOUT ! ;
 6 : UNSWCH 0 ALTOUT ! CLSE ;
 7 : ?ASCII (BLOCK# --- FLAG)
 8 BLOCK 0 SWAP DUP 400 + SWAP
 9 DO I C@ 20 > + I C@ DUP 20 < SWAP 7F > OR
 10 IF DROP 0 LEAVE ENDIF LOOP ;
 11 : TRIAD 0 SWAP SWCH 3 / 3 * 1+ DUP 3 + SWAP
 12 DO I ?ASCII IF 1+ I LIST CR ENDIF LOOP
 13 -DUP IF 3 SWAP - 14 * 0 DO CR LOOP
 14 ." fbForth --- a TI-Forth/fig-Forth extension" 0C EMIT
 15 ENDIF UNSWCH ; R->BASE -->

BLOCK #20 (old TIF #73)
 0 (SMART TRIADS AND INDEX 15SEP82 LAO...mod LES)
 1 BASE->R DECIMAL ." ."
 2 : TRIADS (from to ---)
 3 3 / 3 * 2+ SWAP 3 / 3 * 1+ DO I TRIAD 3 +LOOP ;
 4 : INDEX (from to ---) 1+ SWAP
 5 DO I DUP ?ASCII IF CR 4 .R 2 SPACES I BLOCK 64 TYPE ELSE DROP
 6 ENDIF PAUSE IF LEAVE ENDIF LOOP ; R->BASE ;S
 7
 8
 9
 10
 11
 12
 13
 14
 15

Appendix J Contents of FBLOCKS 285

BLOCK #21 (old TIF #75)
 0 (ASSEMBLER 12JUL82 LCT-LES12DEC2013) 0 CLOAD A$$M BASE->R HEX
 1 ASSEMBLER DEFINITIONS CR ." loading TMS9900 Assembler" CR ." "
 2 : GOP' OVER DUP 1F > SWAP 30 < AND IF + , , ELSE + , ENDIF ;
 3 : GOP <BUILDS , DOES> @ GOP' ;
 4 0440 GOP B, 0680 GOP BL, 0400 GOP BLWP,
 5 04C0 GOP CLR, 0700 GOP SETO, 0540 GOP INV,
 6 0500 GOP NEG, 0740 GOP ABS, 06C0 GOP SWPB,
 7 0580 GOP INC, 05C0 GOP INCT, 0600 GOP DEC,
 8 0640 GOP DECT, 0480 GOP X,
 9 : GROP <BUILDS , DOES> @ SWAP 40 * + GOP' ;
 10 2000 GROP COC, 2400 GROP CZC, 2800 GROP XOR,
 11 3800 GROP MPY, 3C00 GROP DIV, 2C00 GROP XOP,
 12 : GGOP <BUILDS , DOES> @ SWAP DUP DUP 1F > SWAP 30 < AND
 13 IF 40 * + SWAP >R GOP' R> , ELSE 40 * + GOP' ENDIF ;
 14 A000 GGOP A, B000 GGOP AB, 8000 GGOP C, 9000 GGOP CB,
 15 6000 GGOP S, 7000 GGOP SB, E000 GGOP SOC, F000 GGOP SOCB, -->

BLOCK #22 (old TIF #76)
 0 (ASSEMBLER 12JUL82 LCT) ." ."
 1 4000 GGOP SZC, 5000 GGOP SZCB, C000 GGOP MOV, D000 GGOP MOVB,
 2 : 0OP <BUILDS , DOES> @ , ;
 3 0340 0OP IDLE, 0360 0OP RSET, 03C0 0OP CKOF,
 4 03A0 0OP CKON, 03E0 0OP LREX, 0380 0OP RTWP,
 5 : ROP <BUILDS , DOES> @ + , ; 02C0 ROP STST, 02A0 ROP STWP,
 6 : IOP <BUILDS , DOES> @ , , ; 02E0 IOP LWPI, 0300 IOP LIMI,
 7 : RIOP <BUILDS , DOES> @ ROT + , , ; 0220 RIOP AI,
 8 0240 RIOP ANDI, 0280 RIOP CI, 0200 RIOP LI, 0260 RIOP ORI,
 9 : RCOP <BUILDS , DOES> @ SWAP 10 * + + , ;
 10 0A00 RCOP SLA, 0800 RCOP SRA, 0B00 RCOP SRC, 0900 RCOP SRL,
 11 : DOP <BUILDS , DOES> @ SWAP 00FF AND OR , ;
 12 1300 DOP JEQ, 1500 DOP JGT, 1B00 DOP JH, 1400 DOP JHE,
 13 1A00 DOP JL, 1200 DOP JLE, 1100 DOP JLT, 1000 DOP JMP,
 14 1700 DOP JNC, 1600 DOP JNE, 1900 DOP JNO, 1800 DOP JOC,
 15 1C00 DOP JOP, 1D00 DOP SBO, 1E00 DOP SBZ, 1F00 DOP TB, -->

BLOCK #23 (old TIF #77)
 0 (ASSEMBLER 12JUL82 LCT) ." ." CR ." "
 1 : GCOP <BUILDS , DOES> @ SWAP 000F AND 040 * + GOP' ;
 2 3000 GCOP LDCR, 3400 GCOP STCR,
 3 00 CONSTANT R0 01 CONSTANT R1 02 CONSTANT R2 03 CONSTANT R3
 4 04 CONSTANT R4 05 CONSTANT R5 06 CONSTANT R6 07 CONSTANT R7
 5 08 CONSTANT R8 09 CONSTANT R9 0A CONSTANT R10 0B CONSTANT R11
 6 0C CONSTANT R12 0D CONSTANT R13 0E CONSTANT R14
 7 0F CONSTANT R15 08 CONSTANT UP 09 CONSTANT SP 0A CONSTANT W
 8 0D CONSTANT IP 0E CONSTANT RP 0F CONSTANT NEXT
 9 : @() 020 ; : *? 010 + ; : *?+ 030 + ; : @(?) 020 + ;
 10 : @(R0) R0 @(?) ; : *R0 R0 *? ; : *R0+ R0 *?+ ;
 11 : @(R1) R1 @(?) ; : *R1 R1 *? ; : *R1+ R1 *?+ ;
 12 : @(R2) R2 @(?) ; : *R2 R2 *? ; : *R2+ R2 *?+ ;
 13 : @(R3) R3 @(?) ; : *R3 R3 *? ; : *R3+ R3 *?+ ;
 14 : @(R4) R4 @(?) ; : *R4 R4 *? ; : *R4+ R4 *?+ ;
 15 : @(R5) R5 @(?) ; : *R5 R5 *? ; : *R5+ R5 *?+ ; -->

286 Appendix J Contents of FBLOCKS

BLOCK #24 (old TIF #78)
 0 (ASSEMBLER 12JUL82 LCT) ." ."
 1 : @(R6) R6 @(?) ; : *R6 R6 *? ; : *R6+ R6 *?+ ;
 2 : @(R7) R7 @(?) ; : *R7 R7 *? ; : *R7+ R7 *?+ ;
 3 : @(R8) R8 @(?) ; : *R8 R8 *? ; : *R8+ R8 *?+ ;
 4 : @(R9) R9 @(?) ; : *R9 R9 *? ; : *R9+ R9 *?+ ;
 5 : @(R10) R10 @(?) ; : *R10 R10 *? ; : *R10+ R10 *?+ ;
 6 : @(R11) R11 @(?) ; : *R11 R11 *? ; : *R11+ R11 *?+ ;
 7 : @(R12) R12 @(?) ; : *R12 R12 *? ; : *R12+ R12 *?+ ;
 8 : @(R13) R13 @(?) ; : *R13 R13 *? ; : *R13+ R13 *?+ ;
 9 : @(R14) R14 @(?) ; : *R14 R14 *? ; : *R14+ R14 *?+ ;
 10 : @(R15) R15 @(?) ; : *R15 R15 *? ; : *R15+ R15 *?+ ;
 11 : @(UP) UP @(?) ; : *UP UP *? ; : *UP+ UP *?+ ;
 12 : @(SP) SP @(?) ; : *SP SP *? ; : *SP+ SP *?+ ;
 13 : @(W) W @(?) ; : *W W *? ; : *W+ W *?+ ;
 14 : @(IP) IP @(?) ; : *IP IP *? ; : *IP+ IP *?+ ;
 15 -->

BLOCK #25 (old TIF #79)
 0 (ASSEMBLER 12JUL82 LCT) ." ."
 1 : @(RP) RP @(?) ; : *RP RP *? ; : *RP+ RP *?+ ;
 2 : *NEXT+ NEXT *?+ ; : *NEXT NEXT *? ; : @(NEXT) NEXT @(?) ;
 3 : @@ @() ; : ** *? ; : *+ *?+ ; : () @(?) ; (Wycove syntax)
 4
 5 (DEFINE JUMP TOKENS)
 6 : GTE 1 ; : H 2 ; : NE 3 ; : L 4 ; : LTE 5 ; : EQ 6 ;
 7 : OC 7 ; : NC 8 ; : OO 9 ; : HE 0A ; : LE 0B ; : NP 0C ;
 8 : LT 0D ; : GT 0E ; : NO 0F ; : OP 10 ;
 9 : CJMP ?EXEC
 10 CASE LT OF 1101 , 0 ENDOF GT OF 1501 , 0 ENDOF
 11 NO OF 1901 , 0 ENDOF OP OF 1C01 , 0 ENDOF
 12 DUP 0< OVER 10 > OR IF 19 ERROR ENDIF DUP
 13 ENDCASE 100 * 1000 + , ;
 14 : IF, ?EXEC [COMPILE] CJMP HERE 2- 42 ; IMMEDIATE
 15 -->

BLOCK #26 (old TIF #80)
 0 (ASSEMBLER 12JUL82 LCT) ." ."
 1 : ENDIF, ?EXEC
 2 42 ?PAIRS HERE OVER - 2- 2 / SWAP 1+ C! ; IMMEDIATE
 3 : ELSE, ?EXEC 42 ?PAIRS 0 [COMPILE] CJMP HERE 2- SWAP 42
 4 [COMPILE] ENDIF, 42 ; IMMEDIATE
 5 : BEGIN, ?EXEC HERE 41 ; IMMEDIATE
 6 : UNTIL, ?EXEC SWAP 41 ?PAIRS [COMPILE] CJMP HERE - 2 / 00FF
 7 AND HERE 1- C! ; IMMEDIATE
 8 : AGAIN, ?EXEC 0 [COMPILE] UNTIL, ; IMMEDIATE
 9 : REPEAT, ?EXEC >R >R [COMPILE] AGAIN,
 10 R> R> 2- [COMPILE] ENDIF, ; IMMEDIATE
 11 : WHILE, ?EXEC [COMPILE] IF, 2+ ; IMMEDIATE
 12 (: NEXT, *NEXT B, ;) (<--now in kernel)
 13 : RT, R11 ** B, ; (RT pseudo-instruction)
 14 : THEN, [COMPILE] ENDIF, ; IMMEDIATE (ENDIF, synonym)
 15 FORTH DEFINITIONS : A$$M ; R->BASE

Appendix J Contents of FBLOCKS 287

BLOCK #27
 0 \ TMS9900 Assembler BLOAD for fbForth 2.0:9
 1 ." loading TMS9900 Assembler "
 2 BASE->R DECIMAL 28 R->BASE BLOAD
 3 : BLERR IF ." BLOAD error!" THEN ; BLERR FORGET BLERR
 4 FORTH DEFINITIONS ;S
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15

BLOCK #28 – BLOCK #31 TMS9900 Assembler Binary
 0 *
 1 *
 2 *
 3 * * * * * *
 4 * * * * * *
 5 * * * F O U R * * *
 6 * * * * * *
 7 * * * B L O C K S O F B I N A R Y C O D E * * *
 8 * * * * * *
 9 * * * F O U R * * *
 10 * * * * * *
 11 * * * * * *
 12 * * * * * *
 13 *
 14 *
 15 *

BLOCK #32
 0 \ 64-Column Editor BLOAD for fbForth 2.0:9
 1 ." loading 64-column editor "
 2 BASE->R 33 R->BASE BLOAD
 3 : BLERR IF ." BLOAD error!" THEN ; BLERR FORGET BLERR ;S
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15

288 Appendix J Contents of FBLOCKS

BLOCK #33 – BLOCK #35 64-Column Editor Binary
 0 *
 1 *
 2 *
 3 * * * * * *
 4 * * * * * *
 5 * * * T H R E E * * *
 6 * * * * * *
 7 * * * B L O C K S O F B I N A R Y C O D E * * *
 8 * * * * * *
 9 * * * T H R E E * * *
 10 * * * * * *
 11 * * * * * *
 12 * * * * * *
 13 *
 14 *
 15 *

BLOCK #36
 0 (TurboForth [MRW] Disk Catalog Utility..mod 19JUN2015 LES)
 1 0 CLOAD DIR 0 CLOAD CAT CR ." loading DIR catalog utility"
 2 BASE->R HEX 0 VARIABLE CatRec 24 ALLOT
 3 1152 @ CatRec OVER 46 + FILE Cat 0 VARIABLE Total
 4 0 VARIABLE FCount 0 VARIABLE LC 0 VARIABLE bpr
 5 0 VARIABLE sect 0 VARIABLE prot 0B10 VARIABLE Tabs 1C00 ,
 6 : Tab (n ---) Tabs + C@ CURPOS @ SCRN_WIDTH @ / GOTOXY ;
 7 : @R100 9 * CatRec DUP C@ + 2+ + PAD 8 CMOVE PAD F@ F->S ;
 8 : DskInfo RD DROP CR CatRec COUNT ." Disk Name: " TYPE CR
 9 ." Total: " 1 @R100 DUP U.
 10 ." Free: " 2 @R100 DUP U. ." Used: " - U. CR ;
 11 : Ftype (ftype ---) 2 @R100 bpr ! CASE 1 OF ." DIS/FIX"
 12 ENDOF 2 OF ." DIS/VAR" ENDOF 3 OF ." INT/FIX" ENDOF 4 OF
 13 ." INT/VAR" ENDOF 5 OF ." PROGRAM" 0 bpr ! ENDOF
 14 ." ???????" 0 bpr ! ENDCASE
 15 bpr @ -DUP IF 4 U.R THEN ; R->BASE -->

BLOCK #37
 0 BASE->R DECIMAL ." ."
 1 : Head1 (---) ." ---------- ---- ------- --- -" CR ;
 2 : Head (---) ." Name Size Type B/R P" CR Head1 ;
 3 : DoDIR 0 LC ! 0 Total ! 0 FCount ! Head BEGIN
 4 LC @ 20 MOD 19 = IF KEY DROP CR Head THEN RD DROP
 5 CatRec COUNT DUP WHILE TYPE
 6 1 @R100 DUP 1- sect ! DUP 0 Tab 4 U.R Total +! 0 @R100 DUP
 7 prot ! ABS 1 Tab Ftype prot @ 0< IF 2 Tab ." Y" THEN CR
 8 1 LC +! 1 FCount +! REPEAT
 9 DROP DROP Head1
 10 FCount @ . ." files" 0 Tab Total @ 4 U.R ." sectors" CR ;
 11 R->BASE -->
 12
 13
 14
 15

Appendix J Contents of FBLOCKS 289

BLOCK #38
 0 BASE->R ." ."
 1 : DIR
 2 Cat SET-PAB (Initialize PAB skeleton)
 3 INTRNL FXD RLTV INPT 38 REC-LEN
 4 (Get directory name from input stream)
 5 PAB-ADDR @ 10 + 32 WORD HERE COUNT >R SWAP R VMBW R> N-LEN!
 6 (Get the catalog and display it)
 7 OPN (open the catalog)
 8 DskInfo (display disk info)
 9 DoDIR (display file list)
 10 CLSE (close the catalog) ;
 11 R->BASE CR
 12 ." DIR - Catalogs a disk." CR
 13 ." E.g., DIR DSK1." CR
 14
 15

BLOCK #39
 0 (ASM>CODE [port of Mark Wills' code] LES20JUN2016)
 1 CR ." Loading ASM>CODE" 0 CLOAD ASM>CODE BASE @ HEX
 2 0 VARIABLE pfa 0 VARIABLE STRPOS 0 VARIABLE FBUF 4E ALLOT
 3 PABS @ FBUF 1200 FILE FileOut FileOut SET-PAB
 4 : ClearBUF FBUF 50 BLANKS ; : SetFileName (IS:fileName)
 5 BL WORD HERE PAB-ADDR @ 9 + OVER C@ 1+ VMBW ;
 6 : ApdERR (0 msg# -- flag) DROP PAB-ADDR @ 1+ VSBR 0E0 AND
 7 OR R> R> DROP >R ; : instApdERR ' ApdERR CFA ' (ABORT) !
 8 -1 WARNING ! ; : uninstApdERR ' ABORT CFA ' (ABORT) ! 1
 9 WARNING ! ; : OpenFile (--) FileOut DSPLY VRBL 50 REC-LEN
 10 instApdERR 0 APPND OPN uninstApdERR IF OUTPT OPN THEN ;
 11 : Asm? pfa @ DUP CFA @ = ;
 12 : copyStr (addr count --) STRPOS @ 5 * FBUF + SWAP CMOVE ;
 13 : SetName ClearBUF S" CODE: " COUNT copyStr pfa @ NFA DUP C@
 14 01F AND SWAP 1+ SWAP FBUF 6 + SWAP 0 DO OVER C@ 07F AND
 15 OVER C! 1+ SWAP 1+ SWAP LOOP DROP DROP ; -->

BLOCK #40
 0 (ASM>CODE..continued LES20JUN2016) ." ."
 1 : FlushLine 40 WRT ClearBUF 0 STRPOS ! ; : PlaceCell pfa @ @
 2 0 <# # # # # #> copyStr 1 STRPOS +! 2 pfa +! ;
 3 : &; S" ;CODE" COUNT copyStr ;
 4 : ProcessWord SetName FlushLine BASE->R 10 BASE ! BEGIN pfa @ @
 5 045F = 0= WHILE PlaceCell STRPOS @ 0C = IF FlushLine THEN
 6 REPEAT &; FlushLine R->BASE ;
 7 : ASM>CODE (IS:wordName fileName) CR -FIND IF DROP ELSE 0 THEN
 8 pfa ! SetFileName pfa @ IF Asm? IF OpenFile ProcessWord CLSE
 9 ELSE ." Not an assembly language word" THEN
 10 ELSE ." Word not found" THEN ;
 11 CR ." Usage: ASM>CODE <name> <file>"
 12 CR ." E.g.: ASM>CODE MYWORD DSK1.MYWORD" CR BASE ! ;S
 13
 14
 15

290 Appendix J Contents of FBLOCKS

BLOCK #41
 0 (Useful words--most are required by fbForth String Library)
 1 (written by Mark Wills, Lee Stewart & Marshall Linker)
 2 0 CLOAD $. CR ." Loading useful additional words--" CR
 3 ." 2DUP 2DROP NIP TUCK CELLS -ROT PICK ROLL WITHIN <> $. EXIT"
 4 : 2DUP (a b -- a b a b) OVER OVER ;
 5 : 2DROP (a b --) DROP DROP ; : NIP (a b -- b) SWAP DROP ;
 6 : TUCK (a b -- b a b) SWAP OVER ; : CELLS (n -- 2n) 2 * ;
 7 : -ROT (a b c -- c a b) ROT ROT ;
 8 : PICK (+n -- [n]) 1+ CELLS SP@ + @ ;
 9 (The source for ROLL was Marshall Linker via
 10 George Smyth's Forth Forum)
 11 : ROLL ([n]..[0] +n -- [n-1]..[0][n])
 12 -DUP IF 1- SWAP >R MYSELF R> SWAP THEN ;
 13 : WITHIN (n low high -- true|false) OVER - >R - R> U< ;
 14 : <> (a b -- 1|0) = 0= ; : $. BASE->R HEX U. R->BASE ;
 15 : EXIT (--) [COMPILE] ;S ; IMMEDIATE

BLOCK #42
 0 (Portable, Stack Based String Library for fbForth V2.0)
 1 (V 1.0 - Mark Wills Sept 2014.)
 2 (Ported from the original TurboForth code by Mark Wills)
 3 (Modified by Lee Stewart October 2014)
 4 BASE->R DECIMAL 41 R->BASE CLOAD $. 0 CLOAD $.S
 5 CR ." Loading String Library"
 6 0 CONSTANT ($sSize)
 7 HERE CONSTANT ($sEnd)
 8 ($sEnd) VARIABLE ($sp)
 9 0 VARIABLE ($temp1)
 10 0 VARIABLE ($depth)
 11 0 VARIABLE ($temp0)
 12 0 VARIABLE ($temp2)
 13 0 VARIABLE ($temp3) -->
 14
 15

BLOCK #43
 0 (Throw codes for string library, mod: Lee Stewart)
 1 BASE->R DECIMAL ." ."
 2 : (throw) (code --)
 3 CASE
 4 ($sSize) 0= IF DROP 9999 THEN
 5 9900 OF ." String stack underflow" ENDOF
 6 9901 OF ." String too large to assign" ENDOF
 7 9902 OF ." String stack is empty" ENDOF
 8 9903 OF ." Need at least 2 strings on string stack" ENDOF
 9 9904 OF ." String too large for string constant" ENDOF
 10 9905 OF ." Illegal LEN value" ENDOF
 11 9906 OF ." Need at least 3 strings on string stack" ENDOF
 12 9908 OF ." Illegal start value" ENDOF
 13 9999 OF ." String stack not initialized" ENDOF
 14 ENDCASE
 15 CR ABORT ; R->BASE -->

Appendix J Contents of FBLOCKS 291

BLOCK #44
 0 (String stack words, mod: Lee Stewart [INIT$ added])
 1 : ($depth+) (--) 1 ($depth) +! ; BASE->R DECIMAL ." ."
 2 : ($sp@) (-- addr) ($sp) @ ;
 3 : ($rUp) (n -- n|n+1) 1+ -2 AND ;
 4 : cell+ (n -- n+2) COMPILE 2+ ; IMMEDIATE
 5 : (sizeOf$) ($addr - $size) @ ($rUp) cell+ ;
 6 : (set$SP) ($size --) MINUS DUP ($sp@) + ($sEnd)
 7 < IF 9900 (throw) THEN ($sp) +! ;
 8 : (addrOf$) (index -- addr) ($sp@) SWAP DUP IF 0 DO
 9 DUP (sizeOf$) + LOOP ELSE DROP THEN ;
 10 : (lenOf$) ($addr -- len)
 11 STATE @ IF COMPILE @ ELSE @ THEN ; IMMEDIATE
 12 : INIT$ (stack_size --) ' ($sSize) ! HERE ' ($sEnd) !
 13 ($sEnd) ($sSize) + ($sp) ! ($sSize) ALLOT ;
 14 : RESET$ (--) 0 ($depth) ! ($sEnd) ($sSize) + ($sp) ! ;
 15 : DEPTH$ (-- $sDepth) ($depth) @ ; R->BASE -->

BLOCK #45
 0 (String constant words etc.) BASE->R DECIMAL ." ."
 1 : $CONST (max_len tib:"name" --) (runtime: -- $Caddr)
 2 <BUILDS ($rUp) DUP , 0 , ALLOT DOES> NOP ;
 3 : CLEN$ ($Caddr -- len) cell+ @ ;
 4 : MAXLEN$ ($Caddr -- max_len) (lenOf$) ;
 5 : .$CONST ($Caddr --) cell+ DUP (lenOf$)
 6 SWAP cell+ SWAP TYPE ;
 7 : :=" ($Caddr tib:"string" --) DUP @ 34 WORD HERE COUNT
 8 SWAP >R 2DUP < IF 9901 (throw) THEN NIP 2DUP SWAP cell+
 9 ! >R [2 CELLS] LITERAL + R> R> -ROT CMOVE ;
 10 : ($") (addr len --) (ss: -- str) DUP ($rUp) cell+ (set$SP)
 11 DUP ($sp@) ! ($sp@) cell+ SWAP CMOVE ($depth+) ;
 12 : (COMPILE$) (addr len --) DUP >R PAD SWAP CMOVE HERE 6 CELLS
 13 COMPILE LIT + , COMPILE LIT R , COMPILE BRANCH HERE R
 14 ($rUp) + HERE - 2+ , PAD 12 - R HERE SWAP CMOVE R> ($rUp)
 15 ALLOT COMPILE ($") ; R->BASE -->

BLOCK #46
 0 (String stack words) BASE->R DECIMAL ." ."
 1 : $" 34 WORD HERE COUNT STATE @ IF (COMPILE$) ELSE ($") THEN ;
 2 IMMEDIATE : >$ cell+ DUP (lenOf$) SWAP cell+ SWAP ($") ;
 3 : PICK$ DEPTH$ 0= IF 9902 (throw) THEN
 4 (addrOf$) DUP (lenOf$) SWAP cell+ SWAP ($") ;
 5 : DUP$ DEPTH$ 0= IF 9902 (throw) THEN 0 PICK$;
 6 : DROP$ DEPTH$ 0= IF 9902 (throw) THEN
 7 ($sp@) (sizeOf$) MINUS (set$SP) -1 ($depth) +! ;
 8 : SWAP$ DEPTH$ 2 < IF 9903 (throw) THEN ($sp@) DUP (sizeOf$)
 9 HERE SWAP CMOVE 1 (addrOf$) DUP (sizeOf$) ($sp@) SWAP CMOVE
 10 HERE DUP (sizeOf$) ($sp@) DUP (sizeOf$) + SWAP CMOVE ;
 11 : NIP$ DEPTH$ 2 < IF 9903 (throw) THEN SWAP$ DROP$;
 12 : OVER$ DEPTH$ 2 < IF 9903 (throw) THEN 1 PICK$;
 13 : (rot$) ($sp@) 3 (addrOf$) ($sp@) (sizeOf$)
 14 1 (addrOf$) (sizeOf$) 2 (addrOf$) (sizeOf$) + + CMOVE
 15 3 (addrOf$) ($sp) ! -3 ($depth) +! ; R->BASE -->

292 Appendix J Contents of FBLOCKS

BLOCK #47
 0 (String stack words) BASE->R DECIMAL ." ."
 1 : ROT$ DEPTH$ 3 < IF 9906 (throw) THEN
 2 1 PICK$ 1 PICK$ 4 PICK$ (rot$) ;
 3 : -ROT$ DEPTH$ 3 < IF 9906 (throw) THEN
 4 0 PICK$ 3 PICK$ 3 PICK$ (rot$) ;
 5 : LEN$ DEPTH$ 1 < IF 9902 (throw) THEN ($sp@) @ ;
 6 : >$CONST >R DEPTH$ 1 < IF 9902 (throw) THEN LEN$ R @ > IF 9904
 7 (throw) THEN ($sp@) DUP (sizeOf$) R> cell+ SWAP CMOVE DROP$;
 8 : +$ DEPTH$ 2 < IF 9903 (throw) THEN 1 (addrOf$) cell+ HERE 1
 9 (addrOf$) (lenOf$) CMOVE ($sp@) cell+ 1 (addrOf$) (lenOf$) HERE
 10 + LEN$ CMOVE HERE LEN$ 1 (addrOf$) (lenOf$) + DROP$ DROP$ ($") ;
 11 : MID$ DEPTH$ 1 < IF 9902 (throw) THEN DUP LEN$ > OVER 1 < OR
 12 IF 9905 (throw) THEN OVER DUP LEN$ > SWAP 0< OR IF 9908
 13 (throw) THEN SWAP ($sp@) cell+ + SWAP ($") ;
 14 : LEFT$ DEPTH$ 1 < IF 9902 (throw) THEN DUP LEN$ > OVER 1 < OR
 15 IF 9905 (throw) THEN 0 ($sp@) cell+ + SWAP ($") ; R->BASE -->

BLOCK #48
 0 (String stack words) BASE->R DECIMAL ." ."
 1 : RIGHT$ DEPTH$ 1 < IF 9902 (throw) THEN DUP LEN$ > OVER 1 <
 2 OR IF 9905 (throw) THEN ($sp@) (lenOf$) OVER -
 3 ($sp@) cell+ + SWAP ($") ;
 4 : FINDC$ DEPTH$ 1 < IF 9902 (throw) THEN -1 ($temp0) ! ($sp@)
 5 cell+ ($sp@) (lenOf$) 0 DO DUP C@ 2 PICK = IF I ($temp0) !
 6 LEAVE THEN 1+ LOOP DROP DROP ($temp0) @ ;
 7 : FIND$ DEPTH$ 2 < IF 9903 (throw) THEN LEN$ ($temp1) ! 1
 8 (addrOf$) (lenOf$) ($temp0) ! DUP ($temp0) @ > IF DROP -1 EXIT
 9 THEN 1 (addrOf$) cell+ + ($temp2) ! ($sp@) cell+ ($temp3) !
 10 ($temp1) @ ($temp0) @ > IF DROP -1 EXIT THEN 0 ($temp0) @ 0 DO
 11 ($temp3) @ OVER + C@ ($temp2) @ I + C@ = IF 1+ DUP ($temp1) @
 12 = IF DROP I ($temp1) @ - 1+ -2 LEAVE THEN ELSE DROP 0 THEN
 13 LOOP DUP -2 = IF DROP ELSE DROP -1 THEN DROP$;
 14 : .$ DEPTH$ 0= IF 9902 (throw) THEN
 15 ($sp@) cell+ ($sp@) (lenOf$) TYPE DROP$; R->BASE -->

BLOCK #49
 0 (String stack words) BASE->R DECIMAL ." ."
 1 : REV$ DEPTH$ 0= IF 9902 (throw) THEN ($sp@) DUP cell+ >R
 2 (lenOf$) R> SWAP HERE SWAP CMOVE ($sp@) (lenOf$) HERE 1- +
 3 ($sp@) cell+ DUP ($sp@) (lenOf$) + SWAP DO
 4 DUP C@ I C! 1- LOOP DROP ;
 5 : LTRIM$ DEPTH$ 0= IF 9902 (throw) THEN ($sp@) DUP (lenOf$) >R
 6 HERE OVER (sizeOf$) CMOVE 0 R> HERE cell+ DUP >R + R> DO I C@
 7 BL = IF 1+ ELSE LEAVE THEN LOOP DUP 0 > IF >R ($sp@) (lenOf$)
 8 DROP$ HERE cell+ R + SWAP R> - ($") ELSE DROP THEN ;
 9 : RTRIM$ DEPTH$ 0= IF 9902 (throw) THEN REV$ LTRIM$ REV$;
 10 : UCASE$ DEPTH$ 1 < IF 9902 (throw) THEN ($sp@) DUP (lenOf$) +
 11 cell+ ($sp@) cell+ DO I C@ DUP 97 123 WITHIN IF 32 - I
 12 C! ELSE DROP THEN LOOP ; : TRIM$ RTRIM$ LTRIM$;
 13 : LCASE$ DEPTH$ 1 < IF 9902 (throw) THEN ($sp@) DUP (lenOf$) +
 14 cell+ ($sp@) cell+ DO I C@ DUP 65 91 WITHIN IF
 15 32 + I C! ELSE DROP THEN LOOP ; R->BASE -->

Appendix J Contents of FBLOCKS 293

BLOCK #50
 0 (String stack words, mod: LES [CMP$ added])
 1 BASE->R DECIMAL ." ."
 2 : REPLACE$ DEPTH$ 3 < IF 9906 (throw) THEN LEN$ >R 0 FIND$ DUP
 3 ($temp0) ! -1 > IF ($sp@) cell+ HERE ($temp0) @ CMOVE 1
 4 (addrOf$) cell+ HERE ($temp0) @ + 1 (addrOf$) (lenOf$) CMOVE
 5 ($sp@) cell+ ($temp0) @ + R + HERE ($temp0) @ + 1 (addrOf$)
 6 (lenOf$) + LEN$ R> - ($temp0) @ - DUP >R CMOVE R> ($temp0)
 7 @ + 1 (addrOf$) (lenOf$) + DROP$ DROP$ HERE SWAP ($")
 8 ELSE R> DROP THEN ($temp0) @ ;
 9 : CMP$ DEPTH$ 2 < IF 9903 (throw) THEN 1 (addrOf$) cell+ ($sp@)
 10 cell+ 1 (addrOf$) (lenOf$) LEN$ OVER OVER - SGN >R MIN 0
 11 SWAP 0 DO DROP OVER I + C@ OVER I + C@ - SGN DUP IF LEAVE
 12 THEN LOOP R> OVER 0= IF OR ELSE DROP THEN -ROT DROP DROP ;
 13 : VAL$ ($sp@) DUP (lenOf$) >R cell+ PAD 1+ R CMOVE
 14 R PAD C! 32 PAD R> + 1+ C! PAD NUMBER DROP$;
 15 R->BASE -->

BLOCK #51
 0 (String stack words) BASE->R DECIMAL ." ." CR
 1 : $.S CR DEPTH$ 0 > IF ($sp@) DEPTH$." Index|Length|String"
 2 CR ." ------+------+------" CR 0 BEGIN DEPTH$ 0 > WHILE DUP
 3 6 .R ." |" LEN$ 6 .R ." |" .$ 1+ CR REPEAT DROP ($depth) !
 4 ($sp) ! CR ELSE ." String stack is empty." CR THEN
 5 ." Allocated stack space:" ($sEnd) ($sSize) + ($sp@) - 4 .R
 6 ." bytes" CR ." Total stack space:" ($sSize) 4 .R
 7 ." bytes" CR ." Stack space remaining:" ($sp@) ($sEnd) - 4
 8 .R ." bytes" CR ; R->BASE
 9 ." You MUST initialize the string stack before you can use the
 10 string library:" CR
 11 ." 512 INIT$" CR
 12 ." will create a string stack with 512 bytes available." CR
 13 ." Example: $" 34 EMIT ." RED" 34 EMIT ." $" 34 EMIT
 14 ." GREEN" 34 EMIT ." $" 34 EMIT ." BLUE" 34 EMIT ." $.S"
 15 CR

BLOCK #52
 0 \ String Library BLOAD for fbForth 2.0:9
 1 ." loading string library " CR
 2 ." You MUST initialize the string stack before you can use the
 3 string library:" CR
 4 ." 512 INIT$" CR
 5 ." will create a string stack with 512 bytes available." CR
 6 ." Example: $" 34 EMIT ." RED" 34 EMIT ." $" 34 EMIT
 7 ." GREEN" 34 EMIT ." $" 34 EMIT ." BLUE" 34 EMIT ." $.S"
 8 CR
 9 BASE->R DECIMAL 53 R->BASE BLOAD
 10 : BLERR IF ." BLOAD error!" THEN ; BLERR FORGET BLERR
 11 FORTH DEFINITIONS ;S
 12
 13
 14
 15

294 Appendix J Contents of FBLOCKS

BLOCK #53 – #56 String Library Binary
 0 *
 1 *
 2 *
 3 * * * * * *
 4 * * * * * *
 5 * * * F O U R * * *
 6 * * * * * *
 7 * * * B L O C K S O F B I N A R Y C O D E * * *
 8 * * * * * *
 9 * * * F O U R * * *
 10 * * * * * *
 11 * * * * * *
 12 * * * * * *
 13 *
 14 *
 15 *

BLOCK #57
 0
 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15

BLOCK #58
 0 (Catalog program that uses VIB, FDIR and FDRs..LES 11NOV2015)
 1 0 CLOAD CAT 0 CLOAD DIR
 2 BASE->R CR ." loading CAT catalog program"
 3 HEX 0 VARIABLE Buf1 0FE ALLOT 0 VARIABLE Buf2 12 ALLOT
 4 0 VARIABLE Total 0 VARIABLE FCount 0 VARIABLE LC
 5 0 VARIABLE bpr 0 VARIABLE sect 0 VARIABLE prot
 6 1154 CONSTANT VBuf 0B10 VARIABLE Tabs 181E ,
 7 0110 VARIABLE CATPAB
 8 : RdErr? (err ---) -DUP IF CR ." Disk I/O error "
 9 BASE->R [COMPILE] HEX . R->BASE ABORT THEN ;
 10 : DSRLNK10 0A 0E SYSTEM 8350 C@ RdErr? ;
 11 : getBuf (bufadr count ---) VBuf ROT ROT VMBR ;
 12 : getSect (sect# ---) 8350 ! VBuf 834E ! VBuf 2- 8356 !
 13 DSRLNK10 ;
 14 : Tab (n ---) Tabs + C@ CURPOS @ SCRN_WIDTH @ / GOTOXY ;
 15 R->BASE -->

Appendix J Contents of FBLOCKS 295

BLOCK #59
 0 BASE->R DECIMAL ." ."
 1 : getFree (--- n) 0 Buf2 ! Buf1 56 + DUP 200 + SWAP DO
 2 I @ 65535 XOR -DUP IF 16 0 DO DUP 1 AND Buf2 +! 1 SRL LOOP
 3 DROP THEN 2 +LOOP Buf2 @ ; : Head1 (---)
 4 ." ---------- ---- --- --- ----- -" CR ; : Head (---)
 5 ." Name Size Typ B/R Bytes P" CR Head1 ; HEX
 6 : DskInfo (dsk# ---) SWPB 1+ 834C ! 0 getSect Buf1 100 getBuf
 7 CR Buf1 0A ." Disk Name: " TYPE CR ." Total: " Buf1 0A + @ 2-
 8 DUP U. ." Free: " getFree DUP U.
 9 ." Used: " - U. CR ; DECIMAL
 10 : Ftype (---) Buf2 17 + C@ bpr ! Buf2 12 + C@ DUP 8 AND
 11 prot ! 247 AND CASE 0 OF ." D/F" ENDOF 128 OF
 12 ." D/V" ENDOF 2 OF ." I/F" ENDOF 130 OF ." I/V"
 13 ENDOF 1 OF ." PGM" sect @ 256 * Buf2 16 + C@ -DUP IF +
 14 256 - THEN 0 bpr ! 2 Tab 5 U.R ENDOF ." ???" 0 bpr !
 15 ENDCASE bpr @ -DUP IF 4 U.R THEN ; R->BASE -->

BLOCK #60
 0 BASE->R DECIMAL ." ."
 1 : DoCAT (---) 0 LC ! 0 Total ! 0 FCount ! Head 1 getSect
 2 Buf1 256 getBuf Buf1 BEGIN LC @ 20 MOD 19 = IF KEY DROP
 3 CR Head THEN DUP @ -DUP WHILE getSect Buf2 20 getBuf Buf2 10
 4 TYPE Buf2 14 + @ DUP sect ! 1+ DUP 0 Tab 4 U.R Total +! 1 Tab
 5 Ftype prot @ IF 3 Tab ." Y" THEN CR 1 LC +! 1 FCount +! 2+
 6 REPEAT DROP Head1 FCount @ . ." files" 0 Tab Total @ 4 U.R
 7 ." sectors" CR ;
 8 : CAT (dsk# ---) BASE->R [COMPILE] DECIMAL
 9 CATPAB VBuf 2- 2 VMBW DskInfo DoCAT R->BASE ;
 10 CR ." n CAT - Catalogs a disk. n = disk #." CR
 11 ." E.g., 1 CAT catalogs DSK1." CR R->BASE ;S
 12
 13
 14
 15

BLOCK #61
 0 (TI Forth disk browser/copier..LES 04DEC2015) BASE->R HEX
 1 CR ." loading TI Forth Viewer/Copier"
 2 1154 CONSTANT VTIbuf 0110 VARIABLE TIPAB 1 VARIABLE Dsk
 3 0 VARIABLE outBFL 10 ALLOT 0 VARIABLE curBFL 10 ALLOT
 4 : GNUM BL WORD HERE NUMBER DROP ; : getDOidx (-- lim idx)
 5 GNUM GNUM OVER OVER > IF SWAP THEN 1+ SWAP ; : BlkBuf PREV @
 6 2+ ; : getDsk (IS:DSKn) BL WORD HERE 4 + C@ 30 - Dsk ! ;
 7 : RdErr? (err --) -DUP IF CR ." Disk I/O error " BASE->R
 8 [COMPILE] HEX . R->BASE ABORT THEN ; : DSRLNK10 0A 0E SYSTEM
 9 8350 C@ RdErr? ; : getTIblock FLUSH TIPAB VTIbuf 2- 2 VMBW
 10 VTIbuf 834E ! Dsk @ SWPB 1+ 834C ! 2 SLA BlkBuf DUP 400 + SWAP
 11 DO DUP 8350 ! 1+ VTIbuf 2- 8356 ! DSRLNK10 VTIbuf I 100 VMBR
 12 100 +LOOP DROP ; : dnLeft CURPOS @ SCRN_WIDTH @ MOD IF CR THEN
 13 ; : EMITG (n --) CURPOS @ VSBW CURPOS @ 1+ DUP SCRN_END @ <
 14 IF CURPOS ! ELSE DROP CR THEN ; : TYPEG (addr cnt --) -DUP
 15 IF OVER + SWAP DO I C@ EMITG LOOP ELSE DROP THEN ; R->BASE -->

296 Appendix J Contents of FBLOCKS

BLOCK #62
 0 (TI Forth disk browser/copier..continued) BASE->R HEX ." ."
 1 : dspLine (line# --) 40 * BlkBuf + 40 TYPEG ;
 2 : 64page? CURPOS @ 40 + SCRN_END @ > IF KEY DROP PAGE THEN ;
 3 : TIFBLK (IS:blk# DSKn) GNUM getDsk getTIblock PAGE 10 0 DO
 4 64page? dnLeft I 2 .R ." | " I dspLine PAUSE IF LEAVE THEN
 5 LOOP ; : TIFIDX (IS:startblk endblk DSKn) getDOidx getDsk
 6 PAGE DO I getTIblock 64page? dnLeft I 3 .R ." | " 0 dspLine
 7 PAUSE IF LEAVE THEN LOOP CR ." ...done" ; : gBFL (--) BL
 8 WORD HERE outBFL HERE C@ 1+ CMOVE ; : saveCurBFL BPB BPOFF @
 9 + 9 + DUP VSBR curBFL SWAP 1+ VMBR ; : getBFL TIB @ 0F EXPECT
 10 0 IN ! gBFL ; : cpyTI2FB (dstBlk# lim idx --) CURPOS @ >R
 11 DO J CURPOS ! I 3 .R I getTIblock DUP PREV @ ! UPDATE FLUSH
 12 1+ LOOP DROP R> DROP ;
 13 : TIF2FBF (IS:srcStrtBlk srcEndBlk DSKn dstStrtBlk dstBlksFil)
 14 saveCurBFL getDOidx getDsk GNUM gBFL outBFL (UB) ROT ROT
 15 cpyTI2FB curBFL (UB) ; R->BASE -->

BLOCK #63
 0 (TI Forth disk browser/copier..continued) BASE->R HEX ." ."
 1 : BOXCHRS DATA[0000 003C 3C30 3030 0000 00F0 F030 3030 3030
 2 303C 3C00 0000 3030 30F0 F000 0000 0000 00FC FC00 0000 0000
 3 00FC FC30 3030 3030 3030 3030 3030 3060 C070 380C 1830 40A0
 4 A8B4 5414 0800 40C0 4854 F414 0800 40A0 2854 F414 0800 C020
 5 4834 D414 0800 2060 A8F4 3414 0800 E080 6834 D414 0800 4080
 6 C8B4 5414 0800 0000 FC00 FC00 FC00]DATA C9 DCHAR ;
 7 D1CD VARIABLE TLDATA DATA[CDCD CDCE CDCD CDCD D2CD CDCD CDCE
 8 CDCD CDCD D3CD CDCD CDCE CDCD CDCD D4CD CDCD CDCE CDCD CDCD
 9 D5CD CDCD CDCE CDCD CDCD D6CD CDCD CDCE CDCD CDCD D7CD CDCD
 10]DATA DROP DROP
 11 0 VARIABLE TIFblk 0 VARIABLE fbFblk 0 CONSTANT OFFSET
 12 : WINWID (-- winwid) SCRN_WIDTH @ 28 = IF 22 ELSE 40 THEN ;
 13 : CORNERS 3 3 1 0C9 HCHAR 3 14 1 0CB HCHAR 4 WINWID + DUP 3 1
 14 0CA HCHAR 14 1 0CC HCHAR ; : TOPLN (--) OFFSET TLDATA + 4
 15 3 GOTOXY WINWID TYPEG ; R->BASE -->

BLOCK #64
 0 (TI Forth disk browser/copier..continued) BASE->R HEX ." ."
 1 : BOTLN 4 14 WINWID 0CD HCHAR ; : SIDELN (col chr --) 4 10
 2 ROT VCHAR ; : SIDELNS 3 0CF SIDELN WINWID 4 + 0CF SIDELN ;
 3 : RPT (chr cnt --) 0 DO DUP EMITG LOOP DROP ; : drawScrn
 4 PAGE 0D8 6 RPT ." TI Forth Block Viewer/Copier" 0D8 6 RPT
 5 VDPMDE @ 0= IF 0D8 28 RPT THEN ." TI Forth:DSK fbForth:" CR
 6 ." Block Block" 0 ' OFFSET ! CORNERS TOPLN BOTLN
 7 SIDELNS SCRN_WIDTH @ DUP 4 * BASE->R DECIMAL 10 0 DO DUP
 8 CURPOS ! I 3 .R OVER + LOOP R->BASE DROP DROP CR CR
 9 ." F4:+Block F6:-Block FD:+Panel FS:-Panel "
 10 ." FT:TI# FF:fb# ^F:BlkFil ^S:TI>fb F9:Xit" ; : dspLnSeg
 11 (line# --) 40 * BlkBuf OFFSET + + WINWID TYPEG ; : dspBlock
 12 SCRN_WIDTH @ 28 = IF 3 26 OFFSET CASE 00 OF 0CF 0D0 ENDOF 0F
 13 OF 0D0 0D0 ENDOF 1E OF 0D0 0CF ENDOF ELSEOF 0CF 0CF ENDOF
 14 ENDCASE ROT SWAP SIDELN SIDELN TOPLN THEN 10 0 DO SCRN_WIDTH @
 15 I 4 + * 4 + CURPOS ! I dspLnSeg LOOP ; R->BASE -->

Appendix J Contents of FBLOCKS 297

BLOCK #65
 0 (TI Forth disk browser/copier..continued) BASE->R HEX ." ."
 1 : calcOff (-1|0|+1 --) DUP IF 0F * OFFSET + DUP 0< IF DROP 1E
 2 THEN DUP 1E > IF DROP 0 THEN THEN ' OFFSET ! ; : dspPanel
 3 (+1|-1 --) WINWID 22 = IF calcOff dspBlock ELSE DROP THEN ;
 4 : getCmd (-- key) ?KEY DUP IF BEGIN ?KEY 0= UNTIL THEN ;
 5 : dspBlk# (n col row --) GOTOXY 3 .R ; : get# (-- n) TIB @
 6 3 EXPECT 0 IN ! BL WORD HERE NUMBER DROP ; : getBlk#
 7 (min col row -- n) ROT >R OVER OVER GOTOXY CURPOS @ DUP 3 20
 8 VFILL CURPOS ! get# DUP R < IF DROP R> ELSE R> DROP THEN DUP
 9 >R ROT ROT dspBlk# R> ; : nxtTIblk (+1|-1 --) TIFblk +!
 10 TIFblk @ DUP 8 2 dspBlk# getTIblock 0 calcOff dspBlock ;
 11 : clrLstLn 0 17 SCRN_WIDTH @ 20 HCHAR 0 17 GOTOXY ;
 12 : keyPrompt ." ..tap key" KEY DROP clrLstLn ; R->BASE -->
 13
 14
 15

BLOCK #66
 0 (TI Forth disk browser/copier..continued) BASE->R HEX ." ."
 1 : cmd (get command key) BEGIN getCmd CASE 02 OF 1 nxtTIblk 0
 2 ENDOF 0C OF TIFblk @ IF -1 nxtTIblk THEN 0 ENDOF 09 OF 1
 3 dspPanel 0 ENDOF 08 OF -1 dspPanel 0 ENDOF 5D OF 0 8 2 getBlk#
 4 DUP TIFblk ! getTIblock 0 calcOff dspBlock 0 ENDOF 7B OF 1 18
 5 2 getBlk# fbFblk ! 0 ENDOF 06 OF 18 1 GOTOXY CURPOS @ DUP 10
 6 20 VFILL CURPOS ! getBFL outBFL (UB) 0 ENDOF 13 OF fbFblk @
 7 DUP IF outBFL @ DUP IF SWAP TIFblk @ clrLstLn
 8 ." How many blocks? " get# OVER + SWAP clrLstLn cpyTI2FB
 9 ." done" keyPrompt ELSE SWAP DROP THEN THEN 0= IF clrLstLn
 10 ." fbForth block#|file not set!" keyPrompt THEN 0 ENDOF 0F OF
 11 PAGE 1 ENDOF ELSEOF 0 ENDOF ENDCASE UNTIL ;
 12 : TIFVU (IS:blk# DSKn) GNUM DUP TIFblk ! getDsk getTIblock
 13 VDPMDE @ 2 < IF saveCurBFL BOXCHRS drawScrn 0C 1 GOTOXY Dsk @
 14 . TIFblk @ 8 2 dspBlk# dspBlock cmd curBFL (UB) ELSE CR
 15 ." TEXT or TEXT80 modes only!" THEN ; R->BASE -->

BLOCK #67
 0 (TI Forth disk browser/copier..continued) BASE->R HEX ." ."
 1 CR CR ." USAGE:"
 2 CR ." TIFBLK <block#> DSKn"
 3 CR ." ex: TIFBLK 2 DSK2"
 4 CR ." TIFIDX <strtBlock#> <endBlock#> DSKn"
 5 CR ." ex: TIFIDX 9 40 dsk1"
 6 CR ." TIF2FBF <srcStrtBlk#> <srcEndBlk#>"
 7 CR ." DSKn <dstStrtBlk#> <dstFile>"
 8 CR ." ex: TIF2FBF 3 6 DSK3 9 DSK1.MYBLOCKS"
 9 CR ." TIFVU <block#> DSKn"
 10 CR ." ex: TIFVU 58 DSK2" CR CR R->BASE ;S
 11
 12
 13
 14
 15

298 Appendix J Contents of FBLOCKS

BLOCK #68
 0
 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15

BLOCK #69
 0 \ Compact Flash Mount Utilities for nanoPEB/CF7+...
 1 0 CLOAD CFMOUNT BASE->R HEX CR ." Loading CF Utilities..."
 2 : CF? (-- flag) 3FF8 VSBR SWPB 3FF9 VSBR + AA03 = ;
 3 : CFE (err# --) \ display selected error message and abort
 4 CASE
 5 1 OF ." No CF detected!" ENDOF
 6 2 OF ." DSK# must be 1-3!" ENDOF
 7 ENDCASE ABORT ;
 8 : CFVOLS (-- volDSK1 volDSK2 volDSK3) \ get vol#s in DSKs
 9 CF? IF 3FFA PAD 6 VMBR PAD DUP 6 + SWAP DO I @ 2 +LOOP
 10 ELSE 1 CFE THEN ;
 11 : CFMOUNT (vol# dsk# --) \ mount CF vol# in DSK<dsk#>
 12 CF? IF 3FFB SWAP CASE 1 OF ENDOF 2 OF 2+ ENDOF
 13 3 OF 4 + ENDOF ELSEOF 2 CFE ENDOF ENDCASE
 14 OVER SWPB OVER 1- VSBW VSBW ELSE 1 CFE THEN ;
 15 R->BASE CR

BLOCK #70 – BLOCK #80
 0
 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15

Appendix K Diskette Format Details 299

Appendix K Diskette Format Details
The information in this section is based on TI’s Software Specifications for the 99/4 Disk
Peripheral (March 28, 1983).

The original disk drives supplied by TI supported only single-sided, single-density (SSSD),
90 KiB diskettes. The original TI Forth system was designed around and supplied in this disk
format. Though the TI Forth system could not readily be moved to a disk of another size,
fbForth 2.0 consists of only one file, which can easily be moved to a disk of any size. Different
disk formats are possible. However, we will consider the usual format of 256 bytes per sector and
40 tracks per side. The following table shows possible formats with 256 bytes/sector and 40
tracks/side:

Disk Type Sides Density
Sectors/
Track

Total Sectors Capacity

SSSD 1 single 9 360 90 KiB

DSSD 2 single 9 720 180 KiB

SSDD 1 double 18 720 180 KiB

DSDD 2 double 18 1440 360 KiB

Compact Flash26 2 double 20 160027 400 KiB

The information in the following sections accrues to all the above formats:

 K.1 Volume Information Block (VIB)

Byte # 1st Byte 2nd Byte Byte #

0
Disk Volume Name (10 characters padded on the right with blanks)

1

8 9

10 Total Number of Sectors 11

12 Sectors/Track “D” 13

14 “S” “K” 15

16 Protection (“P” or “ ”) Tracks/Side 17

18 # of Sides Density 19

20
Reserved

21

54 55

56
Allocation Bitmap (room for 1600 sectors)

57

254 255

26 This is a third-party peripheral expansion device with 400 KiB virtual disks using Compact Flash memory on
devices named nanoPEB and CF7+ (see website: http://webpages.charter.net/nanopeb/)

27 1600 sectors is the maximum possible number of sectors that can be managed by the current specification.

300 K.1 Volume Information Block (VIB)

Sector 0 contains the volume information block (VIB). The layout is shown in the above table.

 K.2 File Descriptor Index Record (FDIR)

Sector 1 contains the file descriptor index record (FDIR). It can hold up to 127 2-byte entries,
each pointing to a file descriptor record (FDR—see next section). These pointers are
alphabetically sorted by the file names to which they point. This list of pointers starts at the
beginning of sector 1 and ends with a pointer value of 0.

 K.3 File Descriptor Record (FDR)

Byte # 1st Byte 2nd Byte Byte #

0
File Name (10 characters padded on the right with blanks)

1

8 9

10 Reserved 11

12 File Status Flags # of Records/Sector (0 for program) 13

14 # of Sectors currently allocated (not counting this FDR) 15

16 EOF Offset (bytes in last Sector)28 Bytes/Record 17

18 # of Records (Fixed) or # of Sectors (Variable)—bytes are in reverse order 19

20
Reserved

21

26 27

28
Data Chain Pointer Blocks (3 bytes/block encoding two 12-bit numbers that

indicate cluster start and highest, cumulative sector offset)

29

254 255

There can be as many as 127 file descriptor records (FDRs) laid out as in the above table. There
are no subdirectories. FDRs will start in sector 2 and continue, at least, until sector 33, unless a
file allocation requires more space than is available in sectors 34 – end-of-disk, in which case the
system will begin allocating space for the file in the first available sector in sectors 3 – 33. This
is done “to obtain faster directory search response times”29. Each FDR beyond 32 files will be
placed in the first available sector.

Byte 12 contains file status flags defined as follows, with bit 0 as the least significant bit:

28 A zero value for the EOF Offset indicates 256 bytes in the last sector.

29 Software Specifications for the 99/4 Disk Peripheral (March 28, 1983), p. 19.

Appendix K Diskette Format Details 301

Bit # Description

0 Program or Data file (0 = Data; 1 = Program)

1 Binary or ASCII data (0 = ASCII, DISPLAY file; 1 = Binary, INTERNAL or program file)

2 Reserved

3 PROTECT flag (0 = not protected; 1 = protected)

4‒6 Reserved

7 FIXED/VARIABLE flag (0 = fixed-length records; 1 = variable-length records)

The cluster blocks listed in bytes 28 – 255 of the FDR each contain 2 12-bit (3-nybble30)
numbers. The first points to the beginning sector of that cluster of contiguous sectors and the
second is the sector offset reached by that cluster. If we label the 3 nybbles of the cluster pointer
as n1 – n3 and the 3 nybbles of the cumulative sector offset as m1 – m3, with the subscripts
indicating the significance of the nybble, then the 3 bytes are laid out as follows:

Byte 1: n2n1 Byte 2: m1n3 Byte 3: m3m2

The actual 12-bit numbers, then, are

Cluster Pointer: n3n2n1 Sector Offset: m3m2m1

For example, the following represents 2 blocks in the FDR for a file with 2 clusters allocated:

Actual layout in the FDR: 4D20h 5F05h F060h

1st Cluster Pointer: 04Dh (7710)
31 Record Offset: 5F2h (152210)

2nd Cluster Pointer: 005h (510) Record Offset: 60Fh (155110)

The above example represents a file, the data for which occupies 1552 sectors on the disk. If we
assume that no files have been deleted in this case, you should also be able to deduce that there
are only 3 files on the disk because the second cluster starts in sector 5 and occupies all sectors
from 5 – 33, which should tell you there are 3 FDRs before this cluster was allocated: Sector 0
(VIB), sector 1 (FDIR), sector 2 (FDR of first file), sector 3 (FDR of second file), sector 4 (FDR
of third file and sector 5 (second cluster start of the third file, the first two occupying sectors
34 – 76 by inference). Furthermore, the disk contains 1600 sectors because that is the maximum
and the first cluster ended in the 1600 th sector of the disk (1st cluster starts in sector 77 and ends
1522 sectors later in sector 1599).32

30 A nybble (also nibble) is half of one byte (8 bits) and is equal to 4 bits. The editor prefers “nybble” to “nibble”
because of its obvious relationship to “byte”. 2 nybbles = 1 byte.

31 The subscript, 10, indicates base 10 (decimal).

32 This example is taken from one of my (Lee Stewart’s) Compact Flash volumes.

302 Appendix L Notes on Radix-100 Notation

Appendix L Notes on Radix-100 Notation
fbForth 2.0 floating-point math routines use radix-100 format for floating-point numbers. The
term “radix” is used in mathematics to mean “number base”. We will use “radix 100” to describe
the base-100 or centimal number system and “radix 10” to describe the base-10 or decimal
number system. Radix-100 format is the same format used by the XML and GPL routines in the
TI-99/4A console. Each floating-point number is stored in 8 bytes (4 cells) with a sign bit, a 7-
bit, excess-64 (64-biased) integer exponent of the radix (100) and a normalized, 7-digit (1 radix-
100 digit/byte) significand for a total of 8 bytes per floating point number. The signed, radix-100
exponent can be -64 to +63. (Keep in mind that the exponent is for radix-100 notation. Those
same exponents radix 10 would be -128 to +126.) The exponent is stored in the most significant
byte (MSB) biased by 64, i.e., 64 is added to the actual exponent prior to storing, i.e., -64 to +63
is stored as 0 to 127.

The significand (significant digits of the number) must be normalized, i.e., if the number being
represented is not zero, the MSB of the significand must always contain the first non-zero
(significant) radix-100 digit, with the radix exponent of such a value that the radix point
immediately follows the first digit. This is essentially scientific notation for radix 100. Each byte
contains one radix-100 digit of the number, which, of course, means that each byte can have a
value from 0 to 99 (0 to 63h) except for the first byte of a non-zero number, which must be 1 to
99. It is easy to view a radix-100 number as a radix-10 number by representing the radix-100
digits as pairs of radix-10 digits because radix 100 is the square of radix 10. In the following list
of largest and smallest possible 8-byte floating point numbers, the radix-100 representation is on
the left with spaces between pairs of radix-100 digits. The radix-16 (hexadecimal) internal
representation of each byte of the number is also shown:

• Largest positive floating point number [hexadecimal: 7F 63 63 63 63 63 63 63]:

99 . 99 99 99 99 99 99×10063= 99.999999999999×10126

= 9.9999999999999×10127

• Largest negative floating point number [hexadecimal: 80 9D 63 63 63 63 63 63]:

−99 . 99 99 99 99 99 99×10063=−99.999999999999×10126

=−9.9999999999999×10127

• Smallest positive floating point number [hexadecimal: 00 01 00 00 00 00 00 00]:

01 . 00 00 00 00 00 00×100−64= 1.000000000000×10−128

• Smallest negative floating point number [hexadecimal: FF FF 00 00 00 00 00 00]:

−01 . 00 00 00 00 00 00×100−64=−1.000000000000×10−128

The only difference in the internal storage of positive and negative floating point numbers is that
only the first word (2 bytes) of negative numbers is negated or complemented (two’s
complement).

A floating point zero is represented by zeroing only the first word. The remainder of the floating
point number does not need to be zeroed for the number to be treated as zero for all floating
point calculations.

Appendix M Bug Fixes as of fbForth 2.0:9 303

Appendix M Bug Fixes as of fbForth 2.0:9
The following bug fixes have been made over a period of time and are in no particular time order:

The insert-blank-line function, <CTRL+8> , in the 40/80-column editor would not blank the
entire new line if the cursor were not located in the first column.

The character-copy function in the 40/80-column editor would cause fbForth 2.0 to
crash if the line-insertion and line-deletion functions were used on the last line of a block.
The problem was not testing for a copy-count of 0 before copying the first character,
causing the count to pass 0 before the test if the function was passed a count of 0, which
it is on the last line.

SGN would yield +1 for -32768 (8000h), the largest single-precision (16-bit) negative
number possible on the TI-99/4A.

SSDT was improperly setting the address of the Sprite Pattern Descriptor Table. SSDT is
the easiest way for a user to change the Sprite Pattern Descriptor Table in graphics mode
to a different location from the the default 800h. The default, 800h, is coincident with
the text Pattern Descriptor Table. It is easy enough to change the SSDT in code, but it is
not trivial. Besides, SSDT not only changes the user variable read by the constant,
SPDTAB , but also changes VDP register #6 to the proper value and executes DELALL to
initialize sprites.

SPRPUT was setting the x position to 255 (rightmost position) if y was 0.

MOTION was setting the x | y vector to -1 if the y | x vector was negative.

If sprite automotion was not stopped in Graphics mode, blinking text appeared in Text,
Text80, Bitmap and Split modes. Automotion was not stopped when changing VDP
modes. For some reason, if sprite automotion is enabled and sprites are left defined,
Text80, Bitmap and Split modes show blinking areas on the screen that correspond to
those sprites, particularly those defined with patterns in the text PDT area.

BSAVE was not explicitly saving the pointer to the last word in each of the Forth and
Assembler vocabularies.

BSAVE and BLOAD were not saving and loading, respectively, the vocabulary link fields of
the Forth and Assembler vocabularies.

DELALL was only marking the first 8 sprites as deleted, i.e., y = D0h, when it should have
been doing it for all 32! The upshot of this bug was that, as soon as sprite #7 was
defined, all of the remaining sprites were suddenly defined as char 0, transparent and
positioned at (0,0)!

CPYBLK (loaded from FBLOCKS) was copying blocks from previous blocks files if the
corresponding blocks were in block buffers. EMPTY-BUFFERS was added to fix it.

M/ was improperly setting the sign of the remainder to that of the divisor by default.

	Original Dedication of TI Forth
	1 Introduction
	1.1 Original Introduction to TI Forth
	1.2 Author’s Introduction
	1.3 Acquiring fbForth 2.0
	1.4 Starting fbForth 2.0
	1.5 fbForth 2.0 Terminal Response
	1.6 Changing How fbForth 2.0 Starts
	1.7 Startup Changes
	1.7.1 The Opening Menu
	1.7.2 Enabling 1024 KiB SAMS Mapping
	1.7.3 Changes to the fbForth 2.0 ISR
	1.7.4 Changes to COLD
	1.7.5 Redefinition of BOOT

	1.8 Acknowledgments

	2 Getting Started
	2.1 Stack Manipulation
	2.2 Arithmetic and Logical Operations
	2.3 Comparison Operations
	2.4 Memory Access Operations
	2.5 Control Structures
	2.5.1 IF … THEN
	2.5.2 IF … ELSE … THEN
	2.5.3 BEGIN … AGAIN
	2.5.4 BEGIN … UNTIL
	2.5.5 BEGIN … WHILE … REPEAT
	2.5.6 DO … LOOP
	2.5.7 DO … +LOOP
	2.5.8 CASE … ENDCASE
	2.5.8.1 Without ELSEOF … ENDOF
	2.5.8.2 With ELSEOF … ENDOF

	2.6 Input and Output to/from the Terminal
	2.7 Numeric Formatting
	2.8 Block-Related Words
	2.9 Defining Words
	2.10 Miscellaneous Words

	3 How to Use the fbForth 2.0 Editors
	3.1 Forth Block Layout Caveat
	3.2 The Two fbForth Editors
	3.3 Editing Instructions
	3.4 Changing Foreground/Background Colors of 64-Col Editor
	3.5 Block-Copying Utility

	4 Memory Maps
	4.1 VDP Memory Map
	4.2 CPU Memory
	4.3 CPU RAM Pad
	4.4 Low Memory Expansion
	4.5 High Memory Expansion

	5 System Synonyms and Miscellaneous Utilities
	5.1 System Synonyms
	5.1.1 VDP RAM Read/Write
	5.1.2 Extended Utilities: GPLLNK, XMLLNK and DSRLNK
	5.1.3 VDP Write-Only Registers
	5.1.4 VDP RAM Single-Byte Logical Operations

	5.2 Disk Utilities
	5.3 Listing Utilities
	5.4 Debugging
	5.4.1 Dump Information to Terminal
	5.4.2 Tracing Word Execution
	5.4.3 Recursion

	5.5 Random Numbers
	5.6 Miscellaneous Instructions

	6 An Introduction to Graphics
	6.1 Graphics Modes
	6.2 fbForth 2.0 Graphics Words
	6.3 Color Changes
	6.4 Placing Characters on the Screen
	6.5 Defining New Characters
	6.6 Sprites
	6.6.1 Magnification
	6.6.2 Sprite Initialization
	6.6.3 Using Sprites in Bitmap Mode
	6.6.4 Creating Sprites
	6.6.5 Sprite Automotion
	6.6.6 Distance and Coincidences between Sprites
	6.6.7 Deleting Sprites

	6.7 Multicolor Graphics
	6.8 Using Joysticks
	6.9 Dot Graphics
	6.10 Special Sounds
	6.11 Constants and Variables Used in Graphics Programming

	7 The Floating Point Support Package
	7.1 Floating Point Stack Manipulation
	7.2 Floating Point Defining Words
	7.3 Floating Point Fetch and Store
	7.4 Floating Point Conversion Words
	7.5 Floating Point Number Manipulation
	7.6 Floating Point Number Entry
	7.7 Built-in Floating Point Constants
	7.8 Floating Point Arithmetic
	7.9 Floating Point Comparison Words
	7.10 Formatting and Printing Floating Point Numbers
	7.11 Transcendental Functions
	7.12 Interface to the Floating Point Routines
	7.13 Handling Floating Point Errors
	7.14 Floating Point Error Codes

	8 Access to File I/O Using TI-99/4A Device Service Routines
	8.1 Switching VDP Modes After File Setup
	8.2 The Peripheral Access Block (PAB)
	8.3 File Setup and I/O Variables
	8.4 File Attribute Words
	8.5 Words that Perform File I/O
	8.6 Alternate Input and Output
	8.7 File I/O Example 1: Relative Disk File
	8.8 File I/O Example 2: Sequential RS232 File
	8.9 Disk Catalog Utilities
	8.9.1 DIR
	8.9.2 CAT

	9 The fbForth 2.0 TMS9900 Assembler
	9.1 TMS9900 Assembly Mnemonics
	9.2 fbForth 2.0’s Workspace Registers
	9.3 Loading and Using the Assembler
	9.4 fbForth 2.0 Assembler Addressing Modes
	9.4.1 Workspace Register Addressing
	9.4.2 Symbolic Memory Addressing
	9.4.3 Workspace Register Indirect Addressing
	9.4.4 Workspace Register Indirect Auto-increment Addressing
	9.4.5 Indexed Memory Addressing
	9.4.6 Addressing Mode Words for Special Registers

	9.5 Handling the fbForth 2.0 Stacks
	9.6 Structured Assembler Constructs
	9.7 Assembler Jump Tokens
	9.8 Assembly Example for Structured Constructs
	9.9 Jump Instructions (If You Must!)
	9.10 Assembly Example with DOES>ASM:
	9.11 ASM: and DOES>ASM: without the Assembler
	9.11.1 ASM: without the Assembler
	9.11.2 DOES>ASM: without the Assembler

	10 Interrupt Service Routines (ISRs)
	10.1 Overview of fbForth 2.0’s ISR
	10.2 A Detailed Look at fbForth 2.0’s ISR
	10.3 Installing a User ISR
	10.4 Example of a User ISR: DEMO
	10.4.1 Installing the DEMO ISR
	10.4.2 Uninstalling the DEMO ISR

	10.5 Some Additional Thoughts Concerning the Use of ISRs

	11 Potpourri
	11.1 BSAVE and BLOAD
	11.1.1 Using BSAVE to Customize How fbForth 2.0 Boots Up
	11.1.2 An Overlay System with BSAVE and BLOAD
	11.1.3 An Easier Overlay System in Source Code

	11.2 Conditional Loads
	11.3 CRU Words
	11.4 Useful Additional Stack Words

	12 fbForth 2.0 Dictionary Entry Structure
	12.1 Link Field
	12.2 Name Field
	12.3 Code Field
	12.4 Parameter Field
	12.5 Notes on Resident Dictionary Words

	13 Screen Fonts and the Font Editor
	13.1 Screen Font Changes as of fbForth 2.0:8
	13.2 User Fonts
	13.3 Using the Font Editor
	13.4 Modifying the 64-Column Editor’s Font

	14 The Stack-based String Library
	14.1 Introduction—The Concepts behind the Library
	14.1.1 Coding Conventions
	14.1.2 Stack Notation
	14.1.3 Loading the String Stack Library

	14.2 String Constant Words
	14.3 String Stack Words
	14.4 The String Stack
	14.5 Error Checking
	14.6 String Stack Format
	14.7 String Constant Format
	14.8 Throw Codes
	14.9 Author Information

	15 TI Forth Block Utilities
	15.1 TIFBLK: Display TI Forth Block
	15.2 TIFIDX: Display TI Forth Index Lines
	15.3 TIF2FBF: Copy TI Forth Blocks to fbForth Blocks
	15.4 TIFVU: TI Forth Browser/Copier

	16 Speech Words
	16.1 Testing the State of the Speech Synthesizer
	16.2 Using the Speech Synthesizer’s Resident Vocabulary
	16.3 The Speech Synthesizer’s Resident Vocabulary
	16.4 Streaming Raw Speech Data

	17 Sound Words
	17.1 Generating Individual Sounds
	17.2 Playing Sound Lists

	18 Signed Integer Division
	18.1 M/
	18.2 SM/REM and FM/MOD
	18.3 S|F Programming Considerations

	Appendix A ASCII Keycodes (Sequential Order)
	Appendix B ASCII Keycodes (Keyboard Order)
	Appendix C How fbForth 2.0 differs from Starting FORTH (1st Ed.)
	Appendix D The fbForth 2.0 Glossary
	D.1 Explanation of Some Terms and Abbreviations
	D.2 Naming Conventions for Forth Words
	D.3 fbForth 2.0 Word Descriptions

	Appendix E Differences: fbForth 2.0, fbForth 1.0 and TI Forth
	E.1 TI Forth Words not in fbForth 2.0
	E.2 fbForth 1.0 Words not in fbForth 2.0
	E.3 New and Modified Words in fbForth 2.0

	Appendix F User Variables in fbForth 2.0
	F.1 fbForth 2.0 User Variables (Address Offset Order)
	F.2 fbForth 2.0 User Variables (Variable Name Order)

	Appendix G fbForth 2.0 Load Option Directory
	G.1 Option: 64-Column Editor
	G.2 Option: CPYBLK -- Block Copying Utility
	G.3 Option: Memory Dump Utility
	G.4 Option: TRACE -- Colon Definition Tracing
	G.5 Option: Printing Routines
	G.6 Option: TMS9900 Assembler
	G.7 Option: CRU Words
	G.8 Option: More Useful Stack Words etc.
	G.9 Option: Stack-based String Library
	G.10 Option: DIR -- Disk Catalog Utility
	G.11 Option: CAT -- Disk Catalog Utility
	G.12 Option: TI Forth Block Utilities
	G.13 Option: ASM>CODE -- Code Output Utility
	G.14 Option: Compact Flash Utilities

	Appendix H Assembly Source for CODEd Words
	Appendix I Error Messages
	Appendix J Contents of FBLOCKS
	Appendix K Diskette Format Details
	K.1 Volume Information Block (VIB)
	K.2 File Descriptor Index Record (FDIR)
	K.3 File Descriptor Record (FDR)

	Appendix L Notes on Radix-100 Notation
	Appendix M Bug Fixes as of fbForth 2.0:9

